PreambleSince 1980, the American College of Cardiology (ACC) and American Heart Association (AHA) have translated scientific evidence into clinical practice guidelines with recommendations to improve cardiovascular health. These guidelines, based on systematic methods to evaluate and classify evidence, provide a cornerstone of quality cardiovascular care.In response to reports from the Institute of Medicine1,2 and a mandate to evaluate new knowledge and maintain relevance at the point of care, the ACC/AHA Task Force on Clinical Practice Guidelines (Task Force) modified its methodology.3–5 The relationships among guidelines, data standards, appropriate use criteria, and performance measures are addressed elsewhere.5Intended UsePractice guidelines provide recommendations applicable to patients with or at risk of developing cardiovascular disease. The focus is on medical practice in the United States, but guidelines developed in collaboration with other organizations may have a broader target. Although guidelines may be used to inform regulatory or payer decisions, the intent is to improve quality of care and align with patients' interests. Guidelines are intended to define practices meeting the needs of patients in most, but not all, circumstances, and should not replace clinical judgment. Guidelines are reviewed annually by the Task Force and are official policy of the ACC and AHA. Each guideline is considered current until it is updated, revised, or superseded by published addenda, statements of clarification, focused updates, or revised full-text guidelines. To ensure that guidelines remain current, new data are reviewed biannually to determine whether recommendations should be modified. In general, full revisions are posted in 5-year cycles.3–6ModernizationProcesses have evolved to support the evolution of guidelines as “living documents” that can be dynamically updated. This process delineates a recommendation to address a specific clinical question, followed by concise text (ideally <250 words) and hyperlinked to supportive evidence. This approach accommodates time constraints on busy clinicians and facilitates easier access to recommendations via electronic search engines and other evolving technology.Evidence ReviewWriting committee members review the literature; weigh the quality of evidence for or against particular tests, treatments, or procedures; and estimate expected health outcomes. In developing recommendations, the writing committee uses evidence-based methodologies that are based on all available data.3–7 Literature searches focus on randomized controlled trials (RCTs) but also include registries, nonrandomized comparative and descriptive studies, case series, cohort studies, systematic reviews, and expert opinion. Only selected references are cited.The Task Force recognizes the need for objective, independent Evidence Review Committees (ERCs) that include methodologists, epidemiologists, clinicians, and biostatisticians who systematically survey, abstract, and assess the evidence to address syste...
Preamble Since 1980, the American College of Cardiology (ACC) and American Heart Association (AHA) have translated scientific evidence into clinical practice guidelines with recommendations to improve cardiovascular health. These guidelines, based on systematic methods to evaluate and classify evidence, provide a cornerstone of quality cardiovascular care. In response to reports from the Institute of Medicine1,2 and a mandate to evaluate new knowledge and maintain relevance at the point of care, the ACC/AHA Task Force on Clinical Practice Guidelines (Task Force) modified its methodology.3–5 The relationships among guidelines, data standards, appropriate use criteria, and performance measures are addressed elsewhere.5 Intended Use Practice guidelines provide recommendations applicable to patients with or at risk of developing cardiovascular disease. The focus is on medical practice in the United States, but guidelines developed in collaboration with other organizations may have a broader target. Although guidelines may be used to inform regulatory or payer decisions, the intent is to improve quality of care and align with patients' interests. Guidelines are intended to define practices meeting the needs of patients in most, but not all, circumstances, and should not replace clinical judgment. Guidelines are reviewed annually by the Task Force and are official policy of the ACC and AHA. Each guideline is considered current until it is updated, revised, or superseded by published addenda, statements of clarification, focused updates, or revised full-text guidelines. To ensure that guidelines remain current, new data are reviewed biannually to determine whether recommendations should be modified. In general, full revisions are posted in 5-year cycles.3–6 Modernization Processes have evolved to support the evolution of guidelines as “living documents” that can be dynamically updated. This process delineates a recommendation to address a specific clinical question, followed by concise text (ideally <250 words) and hyperlinked to supportive evidence. This approach accommodates time constraints on busy clinicians and facilitates easier access to recommendations via electronic search engines and other evolving technology. Evidence Review Writing committee members review the literature; weigh the quality of evidence for or against particular tests, treatments, or procedures; and estimate expected health outcomes. In developing recommendations, the writing committee uses evidence-based methodologies that are based on all available data.3–7 Literature searches focus on randomized controlled trials (RCTs) but also include registries, nonrandomized comparative and descriptive studies, case series, cohort studies, systematic reviews, and expert opinion. Only selected references are cited. The Task Force recognizes the need for objective, independent Evidence Review Committees (ERCs) that include methodologists, epidemiologists, clinicians, and biostatisticians who systematically survey, abstract, and assess the evidence t...
Background-Various measures of arterial stiffness and wave reflection have been proposed as cardiovascular risk markers.Prior studies have not assessed relations of a comprehensive panel of stiffness measures to prognosis in the community. Methods and Results-We used proportional hazards models to analyze first-onset major cardiovascular disease events (myocardial infarction, unstable angina, heart failure, or stroke) in relation to arterial stiffness (pulse wave velocity [PWV]), wave reflection (augmentation index, carotid-brachial pressure amplification), and central pulse pressure in 2232 participants (mean age, 63 years; 58% women) in the Framingham Heart Study. During median follow-up of 7.8 (range, 0.2 to 8.9) years, 151 of 2232 participants (6.8%) experienced an event. In multivariable models adjusted for age, sex, systolic blood pressure, use of antihypertensive therapy, total and high-density lipoprotein cholesterol concentrations, smoking, and presence of diabetes mellitus, higher aortic PWV was associated with a 48% increase in cardiovascular disease risk (95% confidence interval, 1.16 to 1.91 per SD; Pϭ0.002). After PWV was added to a standard risk factor model, integrated discrimination improvement was 0.7% (95% confidence interval, 0.05% to 1.3%; PϽ0.05). In contrast, augmentation index, central pulse pressure, and pulse pressure amplification were not related to cardiovascular disease outcomes in multivariable models. Conclusions-Higher aortic stiffness assessed by PWV is associated with increased risk for a first cardiovascular event.Aortic PWV improves risk prediction when added to standard risk factors and may represent a valuable biomarker of cardiovascular disease risk in the community. (Circulation. 2010;121:505-511.)
Background-Digital pulse amplitude augmentation in response to hyperemia is a novel measure of peripheral vasodilator function that depends partially on endothelium-derived nitric oxide. Baseline digital pulse amplitude reflects local peripheral arterial tone. The relation of digital pulse amplitude and digital hyperemic response to cardiovascular risk factors in the community is unknown. Methods and Results-Using a fingertip peripheral arterial tonometry (PAT) device, we measured digital pulse amplitude in Framingham Third Generation Cohort participants (nϭ1957; mean age, 40Ϯ9 years; 49% women) at baseline and in 30-second intervals for 4 minutes during reactive hyperemia induced by 5-minute forearm cuff occlusion. To evaluate the vascular response in relation to baseline, adjusting for systemic effects and skewed data, we expressed the hyperemic response (called the PAT ratio) as the natural logarithm of the ratio of postdeflation to baseline pulse amplitude in the hyperemic finger divided by the same ratio in the contralateral finger that served as control. The relation of the PAT ratio to cardiovascular risk factors was strongest in the 90-to 120-second postdeflation interval (overall model R 2 ϭ0.159). In stepwise multivariable linear regression models, male sex, body mass index, ratio of total to high-density lipoprotein cholesterol, diabetes mellitus, smoking, and lipid-lowering treatment were inversely related to PAT ratio, whereas increasing age was positively related to PAT ratio (all PϽ0.01). Conclusions-Reactive
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.