The main objective of this review is to evaluate the performance of constructed wetlands (CWs) used to reduce antibiotic-resistant genes (ARGs) during sewage treatment. To accomplish this objective, statistical and correlation analyses were performed using published data to determine the influence of operational and design parameters on ARG reduction in CWs. The effects of design and operational parameters, such as different CW configurations, seasonality, monoculture and polyculture, support medium, and hydraulic retention time (HRT), on ARG removals, were analyzed. A comparison of ARG reduction under different CW configurations showed that the hybrid configuration of surface flow (SF)–vertical subsurface flow (VSSF) achieved the highest reductions, with values of 1.55 ulog. In this case, aeration is considered an important factor to reduce ARGs in CWs, and it should be considered in future studies. However, statistical analyses showed that the ARG reductions under different CW configurations were not significant (p > 0.05). The same behavior was observed when the effects of operational factors on ARG reductions were analyzed (p > 0.05). The results of this study show that CWs are not optimal technologies to reduce ARGs in sewage. The combination of CWs with advanced wastewater technologies can be a solution for enhancing ARG reduction and reducing the spread of antibiotic resistance.
The vermifilter (VF) is regarded as a sustainable solution for treating rural sewage. However, few studies have investigated the performance of a full-scale vermifilter. The objective of this study is to evaluate the performance of a full-scale vermifilter in reducing organic matter, nutrients, and antibiotic-resistant bacteria contained in sewage. Influent and effluents were obtained from a rural sewage treatment plant using a VF and UV disinfection system. The results show a significant removal (p < 0.05) of chemical organic demand (COD) (77%), biochemical oxygen demand (BOD5) (84%), total nitrogen (TN) (53%), and total phosphorus (36%). Seasonality is an influential variable for COD, BOD5, and TN removal. In addition, the molecular weight distribution shows that the VF does not generate a considerable change in the distribution of organic matter (COD and total organic carbon (TOC)) and NH4+-N. The UV disinfection system eliminated 99% of coliform bacteria; however, they are not eliminated to safe concentrations. Therefore, it is possible to detect bacteria resistant to the antibiotics ciprofloxacin, amoxicillin, and ceftriaxone at 63.5%, 87.3%, and 63.5%, respectively, which were detected in the effluents. This study shows the potential of a system for the removal of pollution and the need to optimize the VF to be a safe treatment.
Laundry greywater is considered as an alternative source of non-potable water, as it is discharged in approximately 70% of homes. Because this water contains compounds such as biodegradable and recalcitrant organic matter, surfactants, and microbiological compounds, it must be treated prior to reuse. Therefore, the objective of this study was to assess the behavior of organic matter and antibiotic-resistant bacteria (ARB) in greywater treated by a constructed wetland (CW). The results show that the organic matter removal efficiencies were 67.19%, 50.15%, and 63.57% for biological oxygen demand (BOD5), chemical oxygen demand (COD) and total organic carbon (TOC), respectively; these efficiencies were not significant (p > 0.05). In addition, the CW allows the distribution of TOC and ionic compounds in the fractions below 1000 Da to increase by 5.03% and 13.05%, respectively. Meanwhile, the treatment of microbiological compounds generated non-significant removals (p > 0.05), along with increases in bacteria resistant to the antibiotics ciprofloxacin (CIP) and ceftriaxone (CTX) of 36.34%, and 40.79%, respectively. In addition, a strong association between ARB to CIP, CTX, cationic and non-ionic surfactants was determined, indicating the role of surfactants in ARB selection. It is suggested that disinfection systems should be employed prior to the reuse of the treated water.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.