In many low income countries health information systems are poorly equipped to provide detailed information on hospital care and outcomes. Information is thus rarely used to support practice improvement. We describe efforts to tackle this challenge and to foster learning concerning collection and use of information. This could improve hospital services in Kenya.We are developing a Clinical Information Network, a collaboration spanning 14 hospitals, policy makers and researchers with the goal of improving information available on the quality of inpatient paediatric care across common childhood illnesses in Kenya. Standardised data from hospitals’ paediatric wards are collected using non-commercial and open source tools. We have implemented procedures for promoting data quality which are performed prior to a process of semi-automated analysis and routine report generation for hospitals in the network.In the first phase of the Clinical Information Network, we collected data on over 65 000 admission episodes. Despite clinicians’ initial unfamiliarity with routine performance reporting, we found that, as an initial focus, both engaging with each hospital and providing them information helped improve the quality of data and therefore reports. The process has involved mutual learning and building of trust in the data and should provide the basis for collaborative efforts to improve care, to understand patient outcome, and to evaluate interventions through shared learning.We have found that hospitals are willing to support the development of a clinically focused but geographically dispersed Clinical Information Network in a low-income setting. Such networks show considerable promise as platforms for collaborative efforts to improve care, to provide better information for decision making, and to enable locally relevant research.
ObjectiveTo share approaches and innovations adopted to deliver a relatively inexpensive clinical data management (CDM) framework within a low-income setting that aims to deliver quality pediatric data useful for supporting research, strengthening the information culture and informing improvement efforts in local clinical practice.Materials and methodsThe authors implemented a CDM framework to support a Clinical Information Network (CIN) using Research Electronic Data Capture (REDCap), a noncommercial software solution designed for rapid development and deployment of electronic data capture tools. It was used for collection of standardized data from case records of multiple hospitals’ pediatric wards. R, an open-source statistical language, was used for data quality enhancement, analysis, and report generation for the hospitals.ResultsIn the first year of CIN, the authors have developed innovative solutions to support the implementation of a secure, rapid pediatric data collection system spanning 14 hospital sites with stringent data quality checks. Data have been collated on over 37 000 admission episodes, with considerable improvement in clinical documentation of admissions observed. Using meta-programming techniques in R, coupled with branching logic, randomization, data lookup, and Application Programming Interface (API) features offered by REDCap, CDM tasks were configured and automated to ensure quality data was delivered for clinical improvement and research use.ConclusionA low-cost clinically focused but geographically dispersed quality CDM (Clinical Data Management) in a long-term, multi-site, and real world context can be achieved and sustained and challenges can be overcome through thoughtful design and implementation of open-source tools for handling data and supporting research.
SummaryBackgroundManagement of pneumonia in many low-income and middle-income countries is based on WHO guidelines that classify children according to clinical signs that define thresholds of risk. We aimed to establish whether some children categorised as eligible for outpatient treatment might have a risk of death warranting their treatment in hospital.MethodsWe did a retrospective cohort study of children aged 2–59 months admitted to one of 14 hospitals in Kenya with pneumonia between March 1, 2014, and Feb 29, 2016, before revised WHO pneumonia guidelines were adopted in the country. We modelled associations with inpatient mortality using logistic regression and calculated absolute risks of mortality for presenting clinical features among children who would, as part of revised WHO pneumonia guidelines, be eligible for outpatient treatment (non-severe pneumonia).FindingsWe assessed 16 162 children who were admitted to hospital in this period. 832 (5%) of 16 031 children died. Among groups defined according to new WHO guidelines, 321 (3%) of 11 788 patients with non-severe pneumonia died compared with 488 (14%) of 3434 patients with severe pneumonia. Three characteristics were strongly associated with death of children retrospectively classified as having non-severe pneumonia: severe pallor (adjusted risk ratio 5·9, 95% CI 5·1–6·8), mild to moderate pallor (3·4, 3·0–3·8), and weight-for-age Z score (WAZ) less than −3 SD (3·8, 3·4–4·3). Additional factors that were independently associated with death were: WAZ less than −2 to −3 SD, age younger than 12 months, lower chest wall indrawing, respiratory rate of 70 breaths per min or more, female sex, admission to hospital in a malaria endemic region, moderate dehydration, and an axillary temperature of 39°C or more.InterpretationIn settings of high mortality, WAZ less than −3 SD or any degree of pallor among children with non-severe pneumonia was associated with a clinically important risk of death. Our data suggest that admission to hospital should not be denied to children with these signs and we urge clinicians to consider these risk factors in addition to WHO criteria in their decision making.FundingWellcome Trust.
Evidence demonstrating noninferiority of oral amoxicillin vs benzyl penicillin for severe childhood pneumonia is largely drawn from Asian populations where mortality is low. This study confirms noninferiority and is expected to inform policy on treatment of pneumonia in sub-Saharan Africa.
BackgroundThe Kenyan government, working with international partners and local organizations, has developed an eHealth strategy, specified standards, and guidelines for electronic health record adoption in public hospitals and implemented two major health information technology projects: District Health Information Software Version 2, for collating national health care indicators and a rollout of the KenyaEMR and International Quality Care Health Management Information Systems, for managing 600 HIV clinics across the country. Following these projects, a modified version of the Open Medical Record System electronic health record was specified and developed to fulfill the clinical and administrative requirements of health care facilities operated by devolved counties in Kenya and to automate the process of collating health care indicators and entering them into the District Health Information Software Version 2 system.ObjectiveWe aimed to present a descriptive case study of the implementation of an open source electronic health record system in public health care facilities in Kenya.MethodsWe conducted a landscape review of existing literature concerning eHealth policies and electronic health record development in Kenya. Following initial discussions with the Ministry of Health, the World Health Organization, and implementing partners, we conducted a series of visits to implementing sites to conduct semistructured individual interviews and group discussions with stakeholders to produce a historical case study of the implementation.ResultsThis case study describes how consultants based in Kenya, working with developers in India and project stakeholders, implemented the new system into several public hospitals in a county in rural Kenya. The implementation process included upgrading the hospital information technology infrastructure, training users, and attempting to garner administrative and clinical buy-in for adoption of the system. The initial deployment was ultimately scaled back due to a complex mix of sociotechnical and administrative issues. Learning from these early challenges, the system is now being redesigned and prepared for deployment in 6 new counties across Kenya.ConclusionsImplementing electronic health record systems is a challenging process in high-income settings. In low-income settings, such as Kenya, open source software may offer some respite from the high costs of software licensing, but the familiar challenges of clinical and administration buy-in, the need to adequately train users, and the need for the provision of ongoing technical support are common across the North-South divide. Strategies such as creating local support teams, using local development resources, ensuring end user buy-in, and rolling out in smaller facilities before larger hospitals are being incorporated into the project. These are positive developments to help maintain momentum as the project continues. Further integration with existing open source communities could help ongoing development and implementations of the pro...
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.