Recent reports attribute numerous regulatory functions to the nuclear paraspeckle‐forming long non‐coding RNA, nuclear enriched assembly transcript 1 (NEAT1), but the implications of its involvement in Parkinson's disease (PD) remain controversial. To address this issue, we assessed NEAT1 expression levels and cell type patterns in the substantia nigra (SN) from 53 donors with and without PD, as well as in interference tissue culture tests followed by multiple in‐house and web‐available models of PD. PCR quantification identified elevated levels of NEAT1 expression in the PD SN compared with control brains, an elevation that was reproducible across a multitude of disease models. In situ RNA hybridization supported neuron‐specific formation of NEATl‐based para‐speckles at the SN and demonstrated coincreases of NEAT1 and paraspeckles in cultured cells under paraquat (PQ)‐induced oxidative stress. Furthermore, neuroprotective agents, including fenofibrate and simvastatin, induced NEAT1 up‐regulation, whereas RNA interference—mediated depletion of NEAT1 exacerbated death of PQ‐exposed cells in a leucine‐rich repeat kinase 2‐mediated manner. Our findings highlight a novel protective role for NEAT1 in PD and suggest a previously unknown mechanism for the neuroprotective traits of widely used preventive therapeutics.—Simchovitz, A., Hanan, M., Niederhoffer, N., Madrer, N., Yayon, N., Bennett, E. R., Greenberg, D. S., Kadener, S., Soreq, H. NEAT1 is overexpressed in Parkinson's disease substantia nigra and confers drug‐inducible neuroprotection from oxidative stress. FASEB J. 33, 11223–11234 (2019). http://www.fasebj.org
Cortical interneurons expressing vasoactive intestinal polypeptide (VIP) and choline acetyltransferase (ChAT) are sparsely distributed throughout the neocortex, constituting only 0.5% of its neuronal population. The co-expression of VIP and ChAT suggests that these VIP/ChAT interneurons (VChIs) can release both γ-aminobutyric acid (GABA) and acetylcholine (ACh). In vitro physiological studies quantified the response properties and local connectivity patterns of the VChIs; however, the function of VChIs has not been explored in vivo. To study the role of VChIs in cortical network dynamics and their long-range connectivity pattern, we used in vivo electrophysiology and rabies virus tracing in the barrel cortex of mice. We found that VChIs have a low spontaneous spiking rate (approximately 1 spike/s) in the barrel cortex of anesthetized mice; nevertheless, they responded with higher fidelity to whisker stimulation than the neighboring layer 2/3 pyramidal neurons (Pyrs). Analysis of long-range inputs to VChIs with monosynaptic rabies virus tracing revealed that direct thalamic projections are a significant input source to these cells. Optogenetic activation of VChIs in the barrel cortex of awake mice suppresses the sensory responses of excitatory neurons in intermediate amplitudes of whisker deflections while increasing the evoked spike latency. The effect of VChI activation on the response was similar for both high-whisking (HW) and low-whisking (LW) conditions. Our findings demonstrate that, despite their sparsity, VChIs can effectively modulate sensory processing in the cortical microcircuit.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.