We extend the Saffman theory of membrane hydrodynamics to account for the correlated motion of membrane proteins, along with the effect of protein concentration on that correlation and on the response of the membrane to stresses. Expressions for the coupling diffusion coefficients of protein pairs and their concentration dependence are derived in the limit of small protein size relative to the interprotein separation. The additional role of membrane viscosity as determining the characteristic length scale for membrane response leads to unusual concentration effects at large separation-the transverse coupling increases with protein concentration, whereas the longitudinal one becomes concentration-independent.
The hydrodynamic theory of heterogeneous fluid membranes is extended to the case of a membrane adjacent to a solid substrate. We derive the coupling diffusion coefficients of pairs of membrane inclusions in the limit of large separation compared to the inclusion size. Two-dimensional compressive stresses in the membrane make the coupling coefficients decay asymptotically as 1/r(2) with interparticle distance r. For the common case, where the distance to the substrate is of submicrometer scale, we present expressions for the coupling between distant disklike inclusions, which are valid for arbitrary inclusion size. We calculate the effect of inclusions on the response of the membrane and the associated corrections to the coupling diffusion coefficients to leading order in the concentration of inclusions. While at short distances the response is modified as if the membrane were a two-dimensional suspension, the large-distance response is not renormalized by the inclusions.
We study the motion of a hot particle in a viscous liquid at low Reynolds numbers, which is inspired by recent experiments with Brownian particles heated by a laser. The difference in temperature between a particle and the ambient fluid causes a spatial variation of the viscosity in the vicinity of the solid body. We derive a general analytical expression determining the force and the torque on a particle for low Péclet numbers by exploiting the Lorentz reciprocal theorem. For small temperature and viscosity variations, a perturbation analysis is implemented to evaluate the leading-order correction to the hydrodynamic force and torque on the particle. The results are applied to describe dynamics of a uniformly hot spherical particle and to spherical particles with a nonuniform surface temperature described by dipole and quadrupole moments. Among other results, we find for dipolar thermal fields that there is coupling of the translational and rotational motions when there are local viscosity variations; such coupling is absent in an isothermal fluid.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.