Assembly of mitochondria into networks supports fuel metabolism and calcium transport and is involved in the cellular response to apoptotic stimuli. A mitochondrial network is defined as a continuous matrix lumen whose boundaries limit molecular diffusion. Observation of individual networks has proven challenging in live cells that possess dense populations of mitochondria. Investigation into the electrical and morphological properties of mitochondrial networks has therefore not yielded consistent conclusions. In this study we used matrix-targeted, photoactivatable green fluorescent protein to tag single mitochondrial networks. This approach, coupled with real-time monitoring of mitochondrial membrane potential, permitted the examination of matrix lumen continuity and fusion and fission events over time. We found that adjacent and intertwined mitochondrial structures often represent a collection of distinct networks. We additionally found that all areas of a single network are invariably equipotential, suggesting that a heterogeneous pattern of membrane potential within a cell's mitochondria represents differences between discrete networks. Interestingly, fission events frequently occurred without any gross morphological changes and particularly without fragmentation. These events, which are invisible under standard confocal microscopy, redefine the mitochondrial network boundaries and result in electrically disconnected daughter units.
According to the present observations, MTX may most likely induce apoptosis through oxidative stress. The high susceptibility of T cell lines to MTX induced apoptosis may account for the beneficial effect of MTX treatment in rheumatoid arthritis, which is characterized by hyperproliferation of T cells.
The importance of research involving non-adherent cell lines, primary cells and blood cells is generally undisputed. However, the task of investigating the complexity and heterogeneity of these cells calls for their long-run monitoring at a single-cell resolution. Such a capability is currently unavailable without having to use disruptive cell tethering. The present Cell Retainer (CR) concept enables high-content correlative multi-parametric measurements, from the functional to molecular level, of the same living individual non-adherent cells within a population. Thereby, despite extensive long-term bio-manipulations, the cells preserve their identity without tethering. Several exemplary experiments, using a microscope-slide-based version of the CR, are presented, which could not be performed by other state of the art methods.
Presented is the use of fluorescence lifetime (FLT), anisotropy decay, and associated parameters as differential indicators of cellular activity. A specially designed combination of a frequency mode based time resolved microscope and a picoliter well-per-cell array have been used to perform temporal measurements in individual cells under various biological conditions. Two biological models have been examined: mitogenic activation of peripheral blood mononuclear cells (PBMC) and induction of programmed cell death (apoptosis) in Jurkat T cells (JTC). The FLT of fluorescein stained PBMC was found to increase from 4+/-0.02 to 4.5+/-0.025 ns due to mitogenic activation, whereas during apoptosis in fluorescein stained JTC, the FLT remained constant. Notably, the rotational correlation times changed in both models: decreased in PBMC from 2.5+/-0.08 to 2+/-0.1 ns, and increased in JTC from 2.1+/-0.07 to 3.3+/-0.09 ns. FLT and rotational correlation time were used to calculate the steady state fluorescence anisotropy (FA) which was compared to directly measured FA values. The present study suggests that in addition to bioindication, the said parameters can provide valuable information about cellular mechanisms that may involve complex molecular diffusion dynamics, as well as information about structural changes that a cellular fluorophore undergoes in the course of cell activation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.