Upregulation of inflammatory cytokines and various growth factors is a significant contributor to discogenic low back pain. The aim of this study was to investigate possible regulation of pain-related molecules by macrophages and the role of macrophage-derived molecules in injured intervertebral disc (IVD)s. C57BL/6J mice were used in this study. We characterized the expression profiles of genes for tumor necrosis factor (TNF)-alpha, interleukin (IL)-1beta, nerve growth factor (NGF), and vascular endothelial growth factor (VEGF) in both intact and injured IVDs. We examined whether macrophage depletion, induced by systemic injection of clodronate-laden liposomes, affected the expression of these molecules in injured IVDs. The effect of TNF-alpha on cultured F4/80-CD11b-cells in injured IVDs was investigated. Expression of TNF-alpha and IL-1beta was significantly increased in injured IVDs, but decreased by macrophage depletion. Expression of NGF and VEGF was also significantly increased, but by contrast was not decreased by macrophage depletion. TNF-alpha treatment of F4/80-cells from injured IVDs upregulated NGF, VEGF, cyclooxygenase (COX)-2, and microsomal prostaglandin E synthase-1 (mPGES1). IVD injury upregulated inflammatory cytokines and various growth factors. Macrophages in the injured IVDs produced inflammatory cytokines, but not growth factors. Macrophage-derived inflammatory cytokines regulate growth factors and pain-related molecules. These findings demonstrate further complexity in the pathogenesis of discogenic pain. © 2018 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res.
BackgroundRecent studies have suggested that the tumor necrosis factor-α (TNF-α) pathway is a potential target for the management of osteoarthritis (OA). Transforming growth factor (TGF)-β-activated kinase 1 (TAK1) is essential in several cytokine-mediated cascades, including the TNF-α, interleukin-1 (IL-1), and TGF-β pathways. The role of TAK1 in synovial tissue in OA is not fully understood. Using synovial cells harvested from OA patients during surgery, we investigated whether TAK1 inhibition suppresses production of TNF-α-induced extracellular matrix degrading enzymes and expression of pain-related molecules.MethodsSynovial tissues were harvested from ten subjects with radiographic evidence of osteoarthritis (OA) during total knee arthroplasty. Synovial cells were cultured and stimulated with control (culture media), 10 ng/mL human recombinant TNF-α, or 10 ng/mL TNF-α and 10 μM of the TAK1 inhibitor (5Z)-7-oxozeaenol for 24 h. Real-time polymerase chain reaction (PCR) analysis was used to monitor expression of mRNA of the extracellular matrix degrading enzymes matrix metalloproteinase-3 (MMP-3) and a disintegrin-like and metalloprotease (reprolysin type) with thrombospondin type 1 motif, 4 (ADAMTS-4); and of the pain-related molecules cyclooxygenase-2 (COX-2), microsomal prostaglandin E synthase-1 (mPGES-1), and nerve growth factor (NGF). MMP-3 and NGF protein concentrations in cell supernatant were measured by enzyme-linked immunosorbent assay (ELISA). COX-2, mPGES-1 and ADAMTS-4 protein expression was also evaluated by western blotting.ResultsTNF-α stimulated increases in ADAMTS-4 and MMP3 mRNA (2.0-fold and 1.6-fold, respectively, p < 0.05) and protein expression (21.5-fold and 2.0-fold, respectively). Treatment with the TAK1 inihibitor (5Z)-7-oxozeaenol reduced ADAMTS-4 and MMP3 mRNA (0.5-fold and 0.6-fold, respectively) and protein expression (1.4-fold and 0.5-fold, respectively) in OA synovial cells. COX-2, mPGES-1 and NGF mRNA (11.2-fold, 3.1-fold and 2.7-fold, respectively) and protein expression (3.0-fold, 2.7-fold and 2.2-fold, respectively) were increased by TNF-α. (5Z)-7-oxozeaenol treatment reduced mPGES1 and NGF mRNA (1.5-fold and 0.8-fold, respectively) and protein (1.5-fold and 0.5-fold, respectively).ConclusionTAK1 plays an important role in the regulation of TNF-α induced extracellular matrix degrading enzymes and pain-related molecule expression. TAK1 may be a potential target for therapeutic strategies aimed at preventing osteoarthritis progression and pain.
BackgroundSynovial membrane inflammation is the most common finding presenting during hip arthroscopy, and may play a role in hip pain. We sought to determine the relationships between synovial cytokine levels, hip pain, and arthroscopic findings of the hip joint.MethodsWe prospectively included 33 patients who underwent arthroscopic hip surgery (34 hips). For all patients, radiographs and severity of pain were evaluated preoperatively. During arthroscopy, we classified the chondral injury and synovitis, noted the incidence of labral tear and its instability, and a sample of the synovial membrane was harvested for quantitative PCR to determine levels of TNFα, IL1β, IL6, ADAMTS4, MMP1, and MMP3. The relationships between the levels of these cytokines, severity of hip pain, and the pathological findings during arthroscopy were examined.ResultsPain intensity and cytokine levels were not significantly different between patients with labral tear or instability and those without. By contrast, the expression of TNFα, IL1β, IL6, and MMP1 mRNA was significantly higher in patients with diffuse synovitis than in patients with focal synovitis. VAS score during rest showed significant positive correlation with IL6 (r = 0.45, p < 0.01), while VAS score on walking showed a positive correlation with TNFα (r = 0.47, p < 0.01), and ADAMTS4 (r = 0.51, p < 0.01). The modified Harris Hip pain score showed a negative correlation with TNFα (r = −0.38, p = 0.04) and IL6 (r = −0.58, p < 0.01).ConclusionsThe severity of synovitis and chondral injury are considered to be more important in the pathology of hip pain than labral tear or instability. Inflammatory cytokines, especially TNFα and IL6 might play an important role in the pathogenesis of pain in patients indicated for hip arthroscopy, possibly depending on the severity of synovitis.
BackgroundThe purpose of this study to compare glenohumeral joint motion during active shoulder axial rotation between subacromial impingement syndrome (SIS) shoulders and asymptomatic shoulders using cine-magnetic resonance imaging (cine-MRI). Measurement of glenohumeral joint motion via manual intervention does not assess the usual glenohumeral joint motion, and the glenoid surface cannot be confirmed manually. However, cine-MRI can produce clear images of glenohumeral joint rotation. Therefore, we sought to measure the active ROM of the glenohumeral rotation using cine-MRI.MethodsSeventy-three shoulders in 42 asymptomatic volunteers and 110 SIS shoulders in 103 consecutive patients were included in this study. We evaluated 36 matched pairs (72 shoulders in total) adjusting for baseline characteristics with propensity score matching method. The patients underwent cine-MRI during axial rotation of the adducted arm. During imaging, participants rotated their shoulder from the maximum internal rotation to the maximum external rotation over the first 10 s and then back to the maximum internal rotation over the subsequent 10 s. We assessed internal/external rotation, and compared the asymptomatic and SIS shoulders in this regard. Evaluation of rotation angles was performed on a series of axial images through the humeral head center.ResultsThe mean internal rotation angles of the asymptomatic and patient groups were 55° ± 10° and 41° ± 23°, respectively, (P = .002; 95% Confidence Interval [CI], 51–58 vs 33–49); the mean external rotation angles were 47° ± 15° and 21° ± 25°, respectively, (P < .001; CI, 42–52 vs 13–29).ConclusionsCompared to asymptomatic shoulders, SIS shoulders showed significantly restricted glenohumeral rotation as determined by cine-MRI. Our results suggested that the significant limitation of active glenohumeral rotation might be associated with rotator cuff dysfunction.
Calcium phosphate cement (CPC) has good release efficiency and has therefore been used as a drug delivery system for postoperative infection. The release profile of CPC has mainly been evaluated by in vitro studies, which are carried out by immersing test specimens in a relatively large amount of solvent. However, it remains unclear whether antibiotic-impregnated CPC has sufficient clinical effects and release in vivo. We examined the in vivo release profile of CPC impregnated with vancomycin (VCM) and compared this with that of polymethylmethacrylate (PMMA) cement. To evaluate the release profile in vitro, the test specimens were immersed in 10 mL sterile phosphate-buffered saline per gram of test specimen and incubated at 37°C for 56 days in triplicate. For in vivo experiments, the test specimens were implanted between the fascia and muscle of the femur of rats. Residual VCM was extracted from the removed test specimens to determine the amount of VCM released into rat tissues. CPC released more VCM over a longer duration than PMMA in vitro. Released levels of VCM from CPC/VCM in vivo were 3.4-fold, 5.0-fold, and 8.6-fold greater on days 1, 7, and 28, respectively, than those released on the corresponding days from PMMA/VCM and were drastically greater on day 56 due to inefficient release from PMMA/VCM. The amount of VCM released from CPC and PMMA was much higher than the minimum inhibitory concentration (1.56 μg) and lower than the detection limit, respectively. Our findings suggest that CPC is a suitable material for releasing antibiotics for local action against established postoperative infection.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.