Divalent metal transporter 1 (DMT1) is responsible for dietary-iron absorption from apical plasma membrane in the duodenum and iron acquisition from the transferrin cycle endosomes in peripheral tissues. Two isoforms of the DMT1 transcript generated by alternative splicing of the 3' exons have been identified in mouse, rat, and human. These isoforms can be distinguished by the different C-terminal amino acid sequences and by the presence (DMT1A) or absence (DMT1B) of an iron response element located in the 3' untranslated region of the mRNA. However, it has been still unknown whether the structural differences between the two DMT1 isoforms is functionally important. Here, we report that each DMT1 isoform exhibits a differential cell type-specific expression patterns and distinct subcellular localizations. DMT1A is predominantly expressed by epithelial cell lines, whereas DMT1B is expressed by the blood cell lines. In HEp-2 cells, GFP-tagged DMT1A is localized in late endosomes and lysosomes, whereas GFP-tagged DMT1B is localized in early endosomes. Using site-directed mutagenesis, a Y(555)XLXX sequence in the cytoplasmic tail of DMT1B has been identified as an important signal sequence for the early endosomal-targeting of DMT1B. In polarized MDCK cells, GFP-tagged DMT1A and DMT1B are localized in the apical plasma membrane and their respective specific endosomes. Disruption of the N-glycosylation sites in each of the DMT1 isoforms affects their polarized distribution into the apical plasma membrane but not their correct endosomal localization. Our data indicate that the cell type-specific expression patterns and the distinct subcellular localizations of two DMT1 isoforms may be involved in the different iron acquisition steps from the subcellular membranes in various cell types.
Autophagy is triggered when organisms sense radical environmental changes, including nutritional starvation. During autophagy, cytoplasmic components, including organelles, are enclosed within autophagosomes and are degraded upon lysosome-vacuole fusion. In this study, we show that processing of GFP-tagged Atg8 can serve as a marker for autophagy in the fission yeast Schizosaccharomyces pombe. Using this marker, 13 Atg homologues were also found to be required for autophagy in fission yeast. In budding yeast, autophagy-deficient mutants are known to be sterile, whereas in fission yeast we found that up to 30 % of autophagy-defective cells with amino acid auxotrophy were able to recover sporulation when an excess of required amino acids was supplied. Furthermore, we found that approximately 15 % of the autophagydefective cells were also able to sporulate when a prototrophic strain was subjected to nitrogen starvation, which suggested that fission yeast may store sufficient intracellular nitrogen to allow partial sporulation under nitrogen-limiting conditions, although the majority of the nitrogen source is supplied by autophagy. Monitoring of the sporulation process revealed that the process was blocked non-specifically at various stages in the atg1D and atg12D mutants, possibly due to a shortage of amino acids. Taking advantage of this partial sporulation ability of fission yeast, we sought evidence for the existence of a recycling system for nitrogen sources during starvation. INTRODUCTIONAutophagy is a degradative pathway conserved among eukaryotic cells, and is responsible for turnover of damaged organelles and long-lived proteins. When living organisms are exposed to radical environmental changes such as nutrient starvation, differentiation or development, autophagy is rapidly induced and inner cell components are reorganized. In the budding yeast Saccharomyces cerevisiae, autophagy is triggered by starvation for nitrogen or carbon, after which endogenous proteins and organelles are enclosed within isolated membranes called autophagosomes. The outer membrane of the autophagosome then fuses with the vacuole, allowing the contents of the autophagosome, designated autophagic bodies, to be released and degraded in the vacuole. The molecular mechanisms involved in the process of autophagy have been subjected to detailed genetic analysis and more than 20 AuTophaGy-related (ATG) genes essential for autophagy have been identified in Sac. cerevisiae Kamada et al., 2000;Mizushima et al., 1998).One of the most striking findings with respect to function of the Atg proteins was the discovery of two ubiquitin-like conjugation systems involving Atg12p and Atg8p (Ohsumi, 2001). Atg12p, which has no apparent homology to ubiquitin, covalently attaches to Atg5p in a manner analogous to ubiquitination, and then forms a complex with Atg16p. Atg8p also lacks similarity to ubiquitin, but Abbreviations: DAPI, 49,6-diamidino-2-phenylindole; DIC, differential interference contrast; FSM, forespore membrane.Two supplementary tables a...
The mechanism by which soluble proteins, such as carboxypeptidase Y, reach the vacuole in Saccharomyces cerevisiae is very similar to the mechanism of lysosomal protein sorting in mammalian cells. Vps10p is a receptor for transport of soluble vacuolar proteins in S. cerevisiae. vps10+ , a gene encoding a homologue of S. cerevisiae PEP1/VPS10, has been identified and deleted from the fission yeast Schizosaccharomyces pombe.
SummaryIn Saccharomyces cerevisiae, three classes of sphingolipids contain myo-inositol -inositol phosphorylceramide (IPC), mannosylinositol phosphorylceramide (MIPC) and mannosyldiinositol phosphorylceramide [M(IP) 2 C]. No fission yeast equivalent of Ipt1p, the inositolphosphotransferase that synthesizes M(IP) 2 C from MIPC, has been found in the Schizosaccharomyces pombe genome. Analysis of the sphingolipid composition of wild-type cells confirmed that MIPC is the terminal and most abundant complex sphingolipid in S. pombe. Three proteins (Sur1p, Csg2p and Csh1p) have been shown to be involved in the synthesis of MIPC from IPC in S. cerevisiae. The S. pombe genome has three genes (SPAC2F3.01, SPCC4F11.04c and SPAC17G8.11c) that are homologues of SUR1, termed imt1 + , imt2 + and imt3 + , respectively. To determine whether these genes function in MIPC synthesis in S. pombe, single and multiple gene disruptants were constructed. Single imt disruptants were found to be viable. MIPC was not detected and IPC levels were increased in the triple disruptant, indicating that the three SUR1 homologues are involved in the synthesis of MIPC. GFP-tagged Imt1p, Imt2p and Imt3p localized to Golgi apparatus membranes. The MIPC-deficient mutant exhibited pleiotropic phenotypes, including defects in cellular and vacuolar morphology, and in localization of ergosterols. MIPC seemed to be required for endocytosis of a plasmamembrane-localized amino acid transporter, because sorting of the transporter from the plasma membrane to the vacuole was severely impaired in the MIPC-deficient mutant grown under nitrogen-limiting conditions. These results suggest that MIPC has multiple functions not only in the maintenance of cell and vacuole morphology but also in vesicular trafficking in fission yeast.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.