High-entropy alloys (HEAs) have been intensively pursued as potentially advanced materials because of their exceptional properties. However, the facile fabrication of nanometer-sized HEAs over conventional catalyst supports remains challenging, and the design of rational synthetic protocols would permit the development of innovative catalysts with a wide range of potential compositions. Herein, we demonstrate that titanium dioxide (TiO2) is a promising platform for the low-temperature synthesis of supported CoNiCuRuPd HEA nanoparticles (NPs) at 400 °C. This process is driven by the pronounced hydrogen spillover effect on TiO2 in conjunction with coupled proton/electron transfer. The CoNiCuRuPd HEA NPs on TiO2 produced in this work were found to be both active and extremely durable during the CO2 hydrogenation reaction. Characterization by means of various in situ techniques and theoretical calculations elucidated that cocktail effect and sluggish diffusion originating from the synergistic effect obtained by this combination of elements.
The dynamic behavior and kinetics of the structural transformation of supported bimetallic nanoparticle catalysts with synergistic functions in the oxidation process are fundamental issues to understand their unique catalytic properties as well as to regulate the catalytic capability of alloy nanoparticles. The phase separation and structural transformation of Pt(3)Sn/C and PtSn/C catalysts during the oxidation process were characterized by in situ time-resolved energy-dispersive XAFS (DXAFS) and quick XAFS (QXAFS) techniques, which are element-selective spectroscopies, at the Pt L(III)-edge and the Sn K-edge. The time-resolved XAFS techniques provided the kinetics of the change in structures and oxidation states of the bimetallic nanoparticles on carbon surfaces. The kinetic parameters and mechanisms for the oxidation of the Pt(3)Sn/C and PtSn/C catalysts were determined by time-resolved XAFS techniques. The oxidation of Pt to PtO in Pt(3)Sn/C proceeded via two successive processes, while the oxidation of Sn to SnO(2) in Pt(3)Sn/C proceeded as a one step process. The rate constant for the fast Pt oxidation, which was completed in 3 s at 573 K, was the same as that for the Sn oxidation, and the following slow Pt oxidation rate was one fifth of that for the first Pt oxidation process. The rate constant and activation energy for the Sn oxidation in PtSn/C were similar to those for the Sn oxidation in Pt(3)Sn/C. In the PtSn/C, however, it was hard for Pt oxidation to PtO to proceed at 573 K, where Pt oxidation was strongly affected by the quantity of Sn in the alloy nanoparticles due to swift segregation of SnO(2) nanoparticles/layers on the Pt nanoparticles. The mechanisms for the phase separation and structure transformation in the Pt(3)Sn/C and PtSn/C catalysts are also discussed on the basis of the structural kinetics of the catalysts themselves determined by the in situ time-resolved DXAFS and QXAFS.
ARTICLEnot simple but proceeds by three successive steps via two intermediates. This behavior may provide the Pt 3 Sn/γ-Al 2 O 3 catalyst with bifunctional and synergistic properties due to core-shell phase separation, its geometric location, changing oxidation states, geometric shape, lattice strain, and interaction at the boundary depending on the ambient.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.