Bone marrow-derived mesenchymal stem cells (MSCs) have contributed to the improvement of diabetic nephropathy (DN); however, the actual mediator of this effect and its role has not been characterized thoroughly. We investigated the effects of MSC therapy on DN, focusing on the paracrine effect of renal trophic factors, including exosomes secreted by MSCs. MSCs and MSC-conditioned medium (MSC-CM) as renal trophic factors were administered in parallel to high-fat diet (HFD)-induced type 2 diabetic mice and streptozotocin (STZ)-induced insulin-deficient diabetic mice. Both therapies showed approximately equivalent curative effects, as each inhibited the exacerbation of albuminuria. They also suppressed the excessive infiltration of BMDCs into the kidney by regulating the expression of the adhesion molecule ICAM-1. Proinflammatory cytokine expression (e.g., TNF-α) and fibrosis in tubular interstitium were inhibited. TGF-β1 expression was down-regulated and tight junction protein expression (e.g., ZO-1) was maintained, which sequentially suppressed the epithelial-to-mesenchymal transition of tubular epithelial cells (TECs). Exosomes purified from MSC-CM exerted an anti-apoptotic effect and protected tight junction structure in TECs. The increase of glomerular mesangium substrate was inhibited in HFD-diabetic mice. MSC therapy is a promising tool to prevent DN via the paracrine effect of renal trophic factors including exosomes due to its multifactorial action.
The incidence of dementia is higher in diabetic patients, but no effective treatment has been developed. This study showed that rat bone marrow mesenchymal stem cells (BM-MSCs) can improve the cognitive impairments of STZ-diabetic mice by repairing damaged neurons and astrocytes. The Morris water maze test demonstrated that cognitive impairments induced by diabetes were significantly improved by intravenous injection of BM-MSCs. In the CA1 region of the hippocampus, degeneration of neurons and astrocytes, as well as synaptic loss, were prominent in diabetes, and BM-MSC treatment successfully normalized them. Since a limited number of donor BM-MSCs was observed in the brain parenchyma, we hypothesized that humoral factors, especially exosomes released from BM-MSCs, act on damaged neurons and astrocytes. To investigate the effectiveness of exosomes for treatment of diabetes-induced cognitive impairment, exosomes were purified from the culture media and injected intracerebroventricularly into diabetic mice. Recovery of cognitive impairment and histological abnormalities similar to that seen with BM-MSC injection was found following exosome treatment. Use of fluorescence-labeled exosomes demonstrated that injected exosomes were internalized into astrocytes and neurons; these subsequently reversed the dysfunction. The present results indicate that exosomes derived from BM-MSCs might be a promising therapeutic tool for diabetes-induced cognitive impairment.
Alzheimer's disease (AD) is characterized by the accumulation of amyloid-β and tau. We previously reported that administration of bone marrow mesenchymal stem cells (BM-MScs) ameliorates diabetes-induced cognitive impairment by transferring exosomes derived from these cells into astrocytes. Here, we show that intracerebroventricularly injected BM-MSCs improve cognitive impairment in AD model mice by ameliorating astrocytic inflammation as well as synaptogenesis. Although AD model mice showed an increase in NF-κB in the hippocampus, BM-MSC-treated AD model mice did not show this increase but showed an increase in levels of microRNA (miR)-146a in the hippocampus. Intracerebroventricularly injected BM-MSCs were attached to the choroid plexus in the lateral ventricle, and thus, BM-MSCs may secrete exosomes into the cerebrospinal fluid. In vitro experiments showed that exosomal miR-146a secreted from BM-MSCs was taken up into astrocytes, and an increased level of miR-146a and a decreased level of NF-κB were observed in astrocytes. Astrocytes are key cells for the formation of synapses, and thus, restoration of astrocytic function may have led to synaptogenesis and correction of cognitive impairment. The present study indicates that exosomal transfer of miR-146a is involved in the correction of cognitive impairment in AD model mice. Hallmarks of Alzheimer's disease (AD), the most common type of dementia, are amyloid-β (Aβ) plaques and tau tangles 1,2. However, several trials of drugs targeting Aβ including β-secretase inhibitors failed to slow cognitive decline, even though Aβ plaque formation was reduced 3. On the other hand, some post-mortem studies showed the existence of cognitively intact individuals with definite pathological features of AD 4. In addition, we revealed that astrocytic function is associated with the maintenance of cognitive function and that a beneficial type of astrocytes protects neuronal activity from the toxicity of Aβ and tau 5. Stem cell therapy has emerged as a novel treatment for many diseases. Bone marrow (BM)-or adipose-derived mesenchymal stem cells (MSCs) have been proposed to reduce the level of Aβ by activating microglia 6,7. Currently, clinical trials using autologous or allogeneic MSCs for AD are ongoing throughout the world 8. However, how MSCs repair the damaged astrocytes in AD models has not been investigated in detail. In a previous study, we reported that BM-MSC administration ameliorates diabetes-induced cognitive impairment 9. Hyperglycemia induces damage to astrocytes by increasing oxidative stress 10. BM-MSC-derived exosomes are taken up into astrocytes and can repair diabetes-induced astroglial damage by ameliorating mitochondrial abnormalities 9. In addition, we previously showed that microRNA (miR)-146a, which is contained in
The underlying therapeutic mechanism of renal tubular epithelium repair of diabetic nephropathy (DN) by bone marrow-derived mesenchymal stem cells (BM-MSCs) has not been fully elucidated. Recently, mitochondria (Mt) transfer was reported as a novel action of BM-MSCs to rescue injured cells. We investigated Mt transfer from systemically administered BM-MSCs to renal proximal tubular epithelial cells (PTECs) in streptozotocin (STZ)-induced diabetic animals. BM-MSCs also transferred their Mt to impaired PTECs when co-cultured in vitro, which suppressed apoptosis of impaired PTECs. Additionally, BM-MSC-derived isolated Mt enhanced the expression of mitochondrial superoxide dismutase 2 and Bcl-2 expression and inhibited reactive oxygen species (ROS) production in vitro. Isolated Mt also inhibited nuclear translocation of PGC-1α and restored the expression of megalin and SGLT2 under high glucose condition (HG) in PTECs. Moreover, isolated Mt directly injected under the renal capsule of STZ rats improved the cellular morphology of STZ-PTECs, and the structure of the tubular basement membrane and brush border in vivo. This study is the first to show Mt transfer from systemically administered BM-MSCs to damaged PTECs in vivo, and the first to investigate mechanisms underlying the potential therapeutic effects of Mt transfer from BM-MSCs in DN.
Background The therapeutic benefits of mesenchymal stromal cells (MSCs) include treatment of chronic inflammation. However, given the short-lived engraftment of these cells in vivo , their therapeutic efficacy remains mysterious. Transient induction of cellular senescence contributes to activation of immune cells, which promotes clearance of damaged cells during tissue remodelling. This may occur in tissue-resident mesenchymal progenitor cells during regeneration. Elucidation of the role of senescence in tissue-resident mesenchymal progenitor cells during regeneration would provide insight into the profile of therapeutic MSCs for treatment of chronic inflammatory disease. Methods We evaluated multipotent mesenchymal progenitor cells, termed fibro/adipogenic progenitors (FAPs), and immune cells in acute muscle injury (AMI) model mice and mice with myosin-induced experimental autoimmune myositis, a model of chronic inflammatory myopathy (CIM). Human bone marrow MSCs were optimised for the treatment of CIM using placental extract. Finding FAPs in AMI transiently expressed p16 INK4A on days 1 and 2 after injury and recruited phagocytic immune cells, whereas in CIM, p16 INK4A expression in FAPs was low. Cellular senescence occurs during the natural maturation of the placenta. Therefore, we used human placental extract to induce p16 INK4A expression in therapeutic human bone marrow MSCs in culture. Treatment of CIM with p16 INK4A -expressing MSCs promoted tissue remodelling by transiently increasing the abundance of engrafted MSCs, inducing cellular senescence in innate FAPs, and recruiting phagocytic immune cells. Interpretation MSCs may exert their effect by remodelling the chronic inflammatory environment via senescence-related regenerative processes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.