Improving the performance of underwater undulatory swimming (UUS) improves swimming time, so it is important to identify the pattern of muscle coordination in swimmers with fast UUS. This study aimed to identify muscular coordination in the trunk and lower limb during UUS in elite swimmers. Nine swimmers (aged 20 ± 2 years; height, 1.74 ± 0.03 m; weight, 73.0 ± 4.4 kg) participated in this study. Measurements were taken by electromyography of eight muscles: rectus abdominis (RA), internal abdominal muscle (IO), rectus femoris (RF), erector spinae (ES), multifidus (MF), tibialis anterior (TA), and thigh biceps (BF), and gastrocnemius (GS). For evaluation of muscle coordination, “muscle synergy” and “activation coefficient” were calculated using non-negative matrix factorization from electromyographic data. Kick frequency, kick amplitude, swim velocity, and kinematics of the pelvis were also calculated. Kick cycle was divided into two kick phases: downward kick (from the highest toe vertical coordinate to the lowest point) and upward kick (from the lowest point to the highest point). Kick frequency, kick amplitude, and swimming velocity were 1.9 ± 0.3 Hz, 0.45 ± 0.6 m, and 1.8 ± 0.2 m·s −1 , respectively. The maximum backward pelvic tilt was 94.4 ± 4.5° and the minimum (forward) was 90.8 ± 5.7°. Three muscle synergy values were extracted from each swimmer during UUS: those involved in the transition from upward kick to downward kick (Synergy 1), downward kick (Synergy 2), and upward kick (Synergy 3). Synergy 1 involved mainly the RF, IO, and RA, which were activated during the turn from the upward to the downward phase. Synergy 2 involved mainly the MF, ES, and TA in the downward kick. Synergy 3 corresponded to the coordination of the BF and GS, which were active in the upward kick. In UUS by elite swimmers, both the upward kick and downward kick followed the trunk muscles involved in the pelvic forward–backward tilt movement, and lower limb muscles were activated. Muscle coordination based on pelvic forward-backward tilt during UUS is expected to contribute to the coaching field for elite swimmer development.
This study investigated muscle synergy during smash shot in badminton and compared synergies of advanced players (more than 7 years experience) and beginner players (less than 3 years experience). The dominant hand of all players was the right side. Muscle activities were recorded on both sides of the rectus abdominis, external oblique (EO), internal oblique/transversus abdominis (IO/TrA), and erector spinae. Additionally, the right side of the biceps brachii, triceps brachii, flexor carpi radialis, flexor carpi ulnaris, and flexor digitorum profundus muscle activities were recorded. All data was obtained using surface electromyography. Synergy was extracted from electromyography signals using nonnegative matrix factorization. Extracted synergies in each group were compared using scalar product (SP) which is the similarity index. As a result, two synergies were extracted in the beginner players and three synergies were extracted in advanced players. Beginner and advanced players had one synergy in common (SP = 0.86) that was mainly on the left side of the EO. It activated in the early stroke and had a role of side bending from the left to hit the shuttlecock at a higher point. Another synergy that had coactivation of the IO/TrA and forearm muscles at impact was extracted only for advanced players and it may enhance the smash shot performance in badminton.
[Purpose] The purpose of this study was to investigate the modular control of locomotor tasks and compared the modules before and after a running intervention. [Subjects and Methods] Electromyographic measurements were performed on eight young, healthy males engaged in a 60s run on a treadmill at 2.8 m/s before and immediately after the 600s of running intervention. Electromyographic data for 15 trunk and lower-limb muscles on the right side were recorded. Muscle synergies were extracted from the electromyography signals using non-negative matrix factorization. [Results] Four modules explained the electromyographic activity of all muscles and had the functions of load acceptance (module 1), push-off (module 2), preparation of landing (module 3), and trunk-stabilization activity during the stance phase (module 4). Modules 1, 2, and 3 matched the basic modules reported in previous studies; whereas, module 4 was different before and after the intervention. [Conclusion] Before the intervention, module 4 engaged the trunk muscles and it was activated in the stance phase during running. However, after the intervention, module 4 engaged the muscles around the pelvis and it was activated after landing. This result suggests that the posture control changes from the trunk muscles to the lower-limb muscles after 10 minutes running.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.