Bacteria adapt themselves to host environments by altering the pattern of gene expression. The promoter-recognizing subunit σ of bacterial RNA polymerase plays a major role in the selection of genes to be transcribed. Among seven σ factors of Escherichia coli, σ38 is responsible for the transcription of genes in the stationary phase and under stressful conditions. We found a transient increase of σ38 when E. coli was injected into the hemocoel of Drosophila melanogaster. The loss of σ38 made E. coli rapidly eliminated in flies, and flies infected with σ38-lacking E. coli stayed alive longer than those infected with the parental strain. This was also observed in fly lines defective in humoral immune responses, but not in flies in which phagocytosis was impaired. The lack of σ38 did not influence the susceptibility of E. coli to phagocytosis, but made them vulnerable to killing after engulfment. The changes caused by the loss of σ38 were recovered by the forced expression of σ38-encoding rpoS as well as σ38-regulated katE and katG coding for enzymes that detoxify reactive oxygen species. These results collectively suggested that σ38 contributes to the prolonged survival of E. coli in Drosophila by inducing the production of enzymes that protect bacteria from killing in phagocytes. Considering the similarity in the mechanism of innate immunity against invading bacteria between fruit flies and humans, the products of these genes could be new targets for the development of more effective antibacterial remedies.
An RNA chaperone of Escherichia coli, called host factor required for phage Qβ RNA replication (Hfq), forms a complex with small noncoding RNAs to facilitate their binding to target mRNA for the alteration of translation efficiency and stability. Although the role of Hfq in the virulence and drug resistance of bacteria has been suggested, how this RNA chaperone controls the infectious state remains unknown. In the present study, we addressed this issue using Drosophila melanogaster as a host for bacterial infection. In an assay for abdominal infection using adult flies, an E. coli strain with mutation in hfq was eliminated earlier, whereas flies survived longer compared with infection with a parental strain. The same was true with flies deficient in humoral responses, but the mutant phenotypes were not observed when a fly line with impaired hemocyte phagocytosis was infected. The results from an assay for phagocytosis in vitro revealed that Hfq inhibits the killing of E. coli by Drosophila phagocytes after engulfment. Furthermore, Hfq seemed to exert this action partly through enhancing the expression of σ38, a stress-responsive σ factor that was previously shown to be involved in the inhibition of phagocytic killing of E. coli, by a posttranscriptional mechanism. Our study indicates that the RNA chaperone Hfq contributes to the persistent infection of E. coli by maintaining the expression of bacterial genes, including one coding for σ38, that help bacteria evade host immunity.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.