Ideally ordered anodic porous alumina with controlled interpore distances was formed by fabricating a resist mask using a flexible mold and subsequent anodization. Prior to forming the resist pattern on the surface of an Al substrate, Al was pre-anodized at 10 V to prepare the fine porous structure, which acts as a resist adhesive layer. After the formation of the resist mask using a flexible mold, an arranged array of cavities with Al exposed at the bottom was formed by the selective dissolution of the oxide layer at resist openings. The subsequent anodization of the sample with the cavity array generated ideally ordered anodic porous alumina because alumina holes were formed at the bottom of cavities during anodization. This process allows the preparation of ideally ordered anodic porous alumina even on a curved Al surface owing to the flexibility of the mold. In addition, this process can also be applied to the preparation of an ideally ordered anodic porous alumina with a large sample area because the Al substrate can be patterned without high pressure. The obtained sample can be used for various applications requiring an ideally ordered hole array structure.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.