Background:The enzymatic activities of the ATP10 family of mammalian P4-ATPases are unknown. Results: ATP10A catalyzes the flipping of NBD-PC and expression of ATP10A altered cell shape and inhibited cell adhesion and spreading. Conclusion: The enhanced PC flipping activity by ATP10A changes the lipid composition, which may cause a delay in cell spreading. Significance: This is the first evidence showing that PC flipping activity by P4-ATPase is associated with the plasma membrane dynamics.
We and others showed that ATP11A and ATP11C, members of the P4-ATPase family, translocate phosphatidylserine (PS) and phosphatidylethanolamine from the exoplasmic to the cytoplasmic leaflets at the plasma membrane. PS exposure on the outer leaflet of the plasma membrane in activated platelets, erythrocytes, and apoptotic cells was proposed to require the inhibition of PS-flippases, as well as activation of scramblases. Although ATP11A and ATP11C are cleaved by caspases in apoptotic cells, it remains unclear how PS-flippase activity is regulated in non-apoptotic cells. Here we report that the PS-flippase ATP11C, but not ATP11A, is sequestered from the plasma membrane via clathrin-mediated endocytosis upon Ca2+-mediated PKC activation. Importantly, we show that a characteristic di-leucine motif (SVRPLL) in the C-terminal cytoplasmic region of ATP11C becomes functional upon PKC activation. Moreover endocytosis of ATP11C is induced by Ca2+-signaling via Gq-coupled receptors. Our data provide the first evidence for signal-dependent regulation of mammalian P4-ATPase.
P4-ATPases are phospholipid flippases that translocate phospholipids from the exoplasmic/luminal to the cytoplasmic leaflet of biological membranes. All P4-ATPases in yeast and some in other organisms are required for membrane trafficking; therefore, changes in the transbilayer lipid composition induced by flippases are thought to be crucial for membrane deformation. However, it is poorly understood whether the phospholipid-flipping activity of P4-ATPases can promote membrane deformation. In this study, we assessed membrane deformation induced by flippase activity via monitoring the extent of membrane tubulation using a system that allows inducible recruitment of Bin/amphiphysin/Rvs (BAR) domains to the plasma membrane (PM). Enhanced phosphatidylcholine-flippase activity at the PM due to expression of ATP10A, a member of the P4-ATPase family, promoted membrane tubulation upon recruitment of BAR domains to the PM This is the important evidence that changes in the transbilayer lipid composition induced by P4-ATPases can deform biological membranes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.