Radon concentration in ground water increased for several months before the 1995 southern Hyogo Prefecture (Kobe) earthquake on 17 January 1995. From late October 1994, the beginning of the observation, to the end of December 1994, radon concentration increased about fourfold. On 8 January, 9 days before the earthquake, the radon concentration reached a peak of more than 10 times that at the beginning of the observation, before starting to decrease. These radon changes are likely to be precursory phenomena of the disastrous earthquake.
mol/cell per d with bicarbonate. Neither carbon assimilation nor growth was evident in response to methane. The atomic ratios between nitrogen incorporated from ammonium and the total cellular nitrogen consistently exceeded the ratios of carbon, suggesting that subseafloor microbes preferentially require nitrogen assimilation for the recovery in vitro. Our results showed that the most deeply buried subseafloor sedimentary microbes maintain potentials for metabolic activities and that growth is generally limited by energy but not by the availability of C and N compounds.
Geochemical characteristics of hydrothermal fluids in the Iheya North hydrothermal field, mid-Okinawa Trough, was investigated. Twelve-years observation reveals temporal variation of vent fluid chemistry potentially controlled by temporally varying pattern of the phase-separation and -segregation, while the constant Element/Cl ratios among the periods and chimneys indicate the stable chemical composition of the source hydrothermal fluid prior to undergoing phaseseparation. The high K contents in the estimated source fluid are typical in the arc-backarc hydrothermal systems due to the hydrothermal reaction with the K-enriched felsic rocks. The high I, B and NH 4 contents and alkalinity are derived from decomposition of the sedimentary organic matters.Compositional and isotopic properties of gas species, CH 4 , H 2 , CO 2 , and C 2 H 6 , strongly suggest a dominance of biogenic CH 4 associated with the sedimentary organic matter. Based on the carbon mass balance calculation and the multidisciplinary investigations of the Iheya North hydrothermal system since the discovery, we hypothesized that the microbial methanogenesis occurs not only within the Central Valley where hydrothermal vents exist, but also in the spatially abundant and widespread basin-filling sediments surrounding the Iheya North Knoll, and that the microbially produced CH 4 is recharged together with the source fluid into the deep hydrothermal reaction zone. This "Microbial Methanogenesis at Recharge area in hydrothermal circulation" (MMR) model would be an implication for the generation and incorporation of hydrothermal fluid CH 4 in the deep-sea hydrothermal systems but also for those of cold seep CH 4 and for the presently uncertain hydrothermal fluid paths in the subseafloor environments. In the near future, the IODP drilling will be conducted in the Iheya North hydrothermal system, and give an excellent opportunity to testify our MMR model.
[1] The Mg/Ca ratio within foraminiferal calcareous tests (shells) is widely used to reconstruct past seawater temperature. However, recent studies reported that the organic components within a test affect the Mg/Ca distribution. In this study, we have measured the Mg/Ca, Sr/Ca, and Ba/Ca ratios within the planktonic foraminifera Pulleniatina obliquiloculata by using a NanoSIMS (secondary ion mass spectrometer (SIMS)), which has excellent spatial resolution ($1 mm) and allows us to compare the distribution of chemical compositions with that of the organic components. Element compositions show banding distributions composed of alternately higher and lower values of those elemental ratios. The Mg/ Ca ratios, previously considered to be mainly controlled by calcification temperature, show larger variations than the values expected from the seawater temperature at the habitat depth of P. obliquiloculata. Comparison of the elemental distribution with the test microstructure reveals that the bands of high Mg/Ca and Sr/Ca ratios correspond with layers of the organic components. Such coincidence suggests that the organic components strongly affect the Mg/Ca and Sr/Ca ratios within a test. In spite of the heterogeneous distribution, temperature estimated from the averaged Mg/Ca ratio within a test is consistent with seawater temperature at the habitat depth of P. obliquiloculata, indicating that whole Mg/Ca ratio of foraminiferal test may be useful as paleotemperature proxy. In contrast to the Mg/Ca ratio the heterogenity in Ba/Ca ratio, which previously has been considered to be mainly controlled by the ambient seawater composition, is not fully matched with the layers of the organic compositions. Although the organic components concentrate Ba, other unknown factors appear to also cause heterogenity in Ba incorporation.Components: 5208 words, 6 figures.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.