Aeration of the lung and the transition to air-breathing at birth is fundamental to mammalian life and initiates major changes in cardiopulmonary physiology. However, the dynamics of this process and the factors involved are largely unknown, because it has not been possible to observe or measure lung aeration on a breath-by-breath basis. We have used the high contrast and spatial resolution of phase contrast X-ray imaging to study lung aeration at birth in spontaneously breathing neonatal rabbits. As the liquid-filled fetal lungs provide little absorption or phase contrast, they are not visible and only become visible as they aerate, allowing a detailed examination of this process. Pups were imaged live from birth to determine the timing and spatial pattern of lung aeration, and relative levels of lung aeration were measured from the images using a power spectral analysis. We report the first detailed observations and measurements of lung aeration, demonstrating its dependence on inspiratory activity and body position; dependent regions aerated at much slower rates. The air/liquid interface moved toward the distal airways only during inspiration, with little proximal movement during expiration, indicating that trans-pulmonary pressures play an important role in airway liquid clearance at birth. Using these imaging techniques, the dynamics of lung aeration and the critical role it plays in regulating the physiological changes at birth can be fully explored.
The effect of a 20 s sustained inflation (SI) and positive end-expiratory pressure (PEEP) on functional residual capacity (FRC) formation at birth were investigated. Preterm rabbit pups (28 d) were randomized at birth into four groups (n = 6 for each): 1) SI, PEEP 5 cm H2O, 2) no SI, PEEP 5 cm H2O, 3) no SI + no PEEP, 4) SI + no PEEP. FRC and tidal volume (Vt) were measured by plethysmography and uniformity of lung aeration by phase contrast x-ray imaging. Ventilation with a SI and PEEP uniformly aerated the lung and Vt and FRC were recruited by the first tidal inflation. Ventilation without a SI, with PEEP, gradually recruited Vt and FRC with each inflation but aeration was not uniform. Ventilation without a SI or PEEP, gradually recruited Vt, but no FRC. Ventilation with a SI, without PEEP, uniformly aerated the lung and recruited Vt but no FRC. FRC was greater with SI (p = 0.006) during the first minute, but was larger with PEEP than without PEEP throughout the first 7 min (p < 0.0005). Effects of PEEP and SI were additive. In ventilated preterm rabbits at birth, combining a SI and PEEP improved FRC formation and uniformity of lung aeration, but PEEP had the greatest influence.
PurposeTo examine the effect of riboflavin/UVA corneal crosslinking on stromal ultrastructure and hydrodynamic behaviour.MethodsOne hundred and seventeen enucleated ungulate eyes (112 pig and 5 sheep) and 3 pairs of rabbit eyes, with corneal epithelium removed, were divided into four treatment groups: Group 1 (28 pig, 2 sheep and 3 rabbits) were untreated; Group 2 (24 pig) were exposed to UVA light (3.04 mW/cm2) for 30 minutes and Group 3 (29 pig) and Group 4 (31 pig, 3 sheep and 3 rabbits) had riboflavin eye drops applied to the corneal surface every 5 minutes for 35 minutes. Five minutes after the initial riboflavin instillation, the corneas in Group 4 experienced a 30 minute exposure to UVA light (3.04 mW/cm2). X-ray scattering was used to obtain measurements of collagen interfibrillar spacing, spatial order, fibril diameter, D-periodicity and intermolecular spacing throughout the whole tissue thickness and as a function of tissue depth in the treated and untreated corneas. The effect of each treatment on the hydrodynamic behaviour of the cornea (its ability to swell in saline solution) and its resistance to enzymatic digestion were assessed using in vitro laboratory techniques.ResultsCorneal thickness decreased significantly following riboflavin application (p<0.01) and also to a lesser extent after UVA exposure (p<0.05). With the exception of the spatial order factor, which was higher in Group 4 than Group 1 (p<0.01), all other measured collagen parameters were unaltered by cross-linking, even within the most anterior 300 microns of the cornea. The cross-linking treatment had no effect on the hydrodynamic behaviour of the cornea but did cause a significant increase in its resistance to enzymatic digestion.ConclusionsIt seems likely that cross-links formed during riboflavin/UVA therapy occur predominantly at the collagen fibril surface and in the protein network surrounding the collagen.
Au nanoclusters of less than 4 nm with a narrow size distribution were prepared and supported in thermosensitive vinyl ether star polymers obtained by living cationic polymerization. The thermosensitivity of the star polymers permitted easy separation of the clusters from the reaction mixture without any negative aggregation. Thus, the Au clusters could be recovered for reuse several times to induce alcohol oxidation with similar reactivity in each run.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.