CuO films, with their many features, attract special attention for applications in various optoelectronics. In their pristine form, CuO films suffer from low conductivity, which limits their application. Modification, especially by doping, is thus needed. The effects of tin (Sn) doping on the structure, morphology, and optical and, more importantly, electrical properties of multi-layered copper oxide (CuO) films deposited onto tin-doped indium oxide (ITO)/glass substrates by sol–gel spin coating are examined here. The multi-layered films were characterized with X-ray diffraction (XRD), atomic force microscopy (AFM), electronic absorption (UV-Visible) spectra, and four probe methods. The results confirmed the substitution of Cu2+ ions by Sn4+ ions in the CuO crystallites without altering their monoclinic structure. The measured crystallite size values decreased with increased doping concentration, indicating increased imperfection. This applies to both 5- and 10-layered CuO films. The doping concentration affected other film characteristics, namely, surface morphology and electrical conductivity, in each layered film. Among various systems, the 10-layered film, with 1.5 at% Sn, exhibited optimal properties in terms of higher uniformity (mean square root surface roughness 41 nm) and higher conductivity (50.3 × 10−3·Ω−1·cm−1).
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.