Segmentation of brain tumor images, to refine the detection and understanding of abnormal masses in the brain, is an important research topic in medical imaging. This paper proposes a new segmentation method, consisting of three main steps, to detect brain lesions using magnetic resonance imaging (MRI). In the first step, the parts of the image delineating the skull bone are removed, to exclude insignificant data. In the second step, which is the main contribution of this study, the particle swarm optimization (PSO) technique is applied, to detect the block that contains the brain lesions. The fitness function, used to determine the best block among all candidate blocks, is based on a two-way fixed-effects analysis of variance (ANOVA). In the last step of the algorithm, the K-means segmentation method is used in the lesion block, to classify it as a tumor or not. A thorough evaluation of the proposed algorithm was performed, using: (1) a private MRI database provided by the Kouba imaging center—Algiers (KICA); (2) the multimodal brain tumor segmentation challenge (BraTS) 2015 database. Estimates of the selected fitness function were first compared to those based on the sum-of-absolute-differences (SAD) dissimilarity criterion, to demonstrate the efficiency and robustness of the ANOVA. The performance of the optimized brain tumor segmentation algorithm was then compared to the results of several state-of-the-art techniques. The results obtained, by using the Dice coefficient, Jaccard distance, correlation coefficient, and root mean square error (RMSE) measurements, demonstrated the superiority of the proposed optimized segmentation algorithm over equivalent techniques.
Segmentation of brain tumor images is a major research topic in medical imaging to have a refined detection and understanding of abnormal masses in the brain. This paper proposes a new segmentation method, consisting of three main steps, to detect brain lesions using magnetic resonance imaging (MRI). In the first step, the parts of the image delineating the skull bone are removed to exclude insignificant data. In the second step, which is the main contribution of this study, the particle swarm optimization (PSO) technique is applied to detect the block that contains the brain lesions. The fitness function, used to determine the best block among all candidate blocks, is based on a two-way fixed-effects analysis of variance (ANOVA). In the last step of the algorithm, the K-means segmentation method is used in the lesion block to classify it as tumor or not. A thorough evaluation of the proposed algorithm is performed using the MRI database provided by the Kouba imaging center in Algiers, Algeria. Estimates of the selected fitness function are first compared to those based on the sum-of-absolute-differences (SAD) dissimilarity criterion and demonstrate the efficiency and robustness of the ANOVA. The performance of the optimized brain tumor segmentation algorithm is then compared to the results of several state-of-the-art techniques, including fuzzy C-means, K-means, Otsu thresholding, local thresholding, and watershed segmentation. The results obtained using Dice coefficient, Jaccard distance, correlation coefficient, and root mean square error (RMSE) measurements demonstrate the superiority of the proposed optimized segmentation algorithm over equivalent techniques.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.