Web service (WS) discovery is an essential task for implementing complex applications in a service oriented architecture (SOA), such as selecting, composing, and providing services. This task is limited semantically in the incorporation of the customer’s request and the web services. Furthermore, applying suitable similarity methods for the increasing number of WSs is more relevant for efficient web service discovery. To overcome these limitations, we propose a new approach for web service discovery integrating multiple similarity measures and k-means clustering. The approach enables more accurate services appropriate to the customer's request by calculating different similarity scores between the customer's request and the web services. The global semantic similarity is determined by applying k-means clustering using the obtained similarity scores. The experimental results demonstrated that the proposed semantic web service discovery approach outperforms the state-of-the approaches in terms of precision (98%), recall (95%), and F-measure (96%). The proposed approach is efficiently designed to support and facilitate the selection and composition of web services phases in complex applications.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.