Background: There has been much interest in environmental temperature and race as modulators of Coronavirus disease-19 (COVID-19) infection and mortality. However, in the United States race and temperature correlate with various other social determinants of health, comorbidities, and environmental influences that could be responsible for noted effects. This study investigates the independent effects of race and environmental temperature on COVID-19 incidence and mortality in United States counties. Methods: Data on COVID-19 and risk factors in all United States counties was collected. 661 counties with at least 50 COVID-19 cases and 217 with at least 10 deaths were included in analyses. Upper and lower quartiles for cases/100,000 people and halves for deaths/100,000 people were compared with t-tests. Adjusted linear and logistic regression analyses were performed to evaluate the independent effects of race and environmental temperature. Results: Multivariate regression analyses demonstrated Black race is a risk factor for increased COVID-19 cases (OR=1.22, 95% CI: 1.09−1.40, P=0.001) and deaths independent of comorbidities, poverty, access to health care, and other risk factors. Higher environmental temperature independently reduced caseload (OR=0.81, 95% CI: 0.71−0.91, P=0.0009), but not deaths. Conclusions: Higher environmental temperatures correlated with reduced COVID-19 cases, but this benefit does not yet appear in mortality models. Black race was an independent risk factor for increased COVID-19 cases and deaths. Thus, many proposed mechanisms through which Black race might increase risk for COVID-19, such as socioeconomic and healthcare-related predispositions, are inadequate in explaining the full magnitude of this health disparity.
<b><i>Background and Purpose:</i></b> Randomized controlled trials have demonstrated the importance of time to endovascular therapy (EVT) in clinical outcomes in large vessel occlusion (LVO) acute ischemic stroke. Delays to treatment are particularly prevalent when patients require a transfer from hospitals without EVT capability onsite. A computer-aided triage system, Viz LVO, has the potential to streamline workflows. This platform includes an image viewer, a communication system, and an artificial intelligence (AI) algorithm that automatically identifies suspected LVO strokes on CTA imaging and rapidly triggers alerts. We hypothesize that the Viz application will decrease time-to-treatment, leading to improved clinical outcomes. <b><i>Methods:</i></b> A retrospective analysis of a prospectively maintained database was assessed for patients who presented to a stroke center currently utilizing Viz LVO and underwent EVT following transfer for LVO stroke between July 2018 and March 2020. Time intervals and clinical outcomes were compared for 55 patients divided into pre- and post-Viz cohorts. <b><i>Results:</i></b> The median initial door-to-neuroendovascular team (NT) notification time interval was significantly faster (25.0 min [IQR = 12.0] vs. 40.0 min [IQR = 61.0]; <i>p</i> = 0.01) with less variation (<i>p</i> < 0.05) following Viz LVO implementation. The median initial door-to-skin puncture time interval was 25 min shorter in the post-Viz cohort, although this was not statistically significant (<i>p</i> = 0.15). <b><i>Conclusions:</i></b> Preliminary results have shown that Viz LVO implementation is associated with earlier, more consistent NT notification times. This application can serve as an early warning system and a failsafe to ensure that no LVO is left behind.
Background: Policymakers have employed various non-pharmaceutical interventions (NPIs)such as stay-at-home orders and school closures to limit the spread of Coronavirus disease . However, these measures are not without cost, and careful analysis is critical to quantify their impact on disease spread and guide future initiatives. This study aims to measure the impact of NPIs on the effective reproductive number (Rt) and other COVID-19 outcomes in U.S. states. Methods:In order to standardize the stage of disease spread in each state, this study analyzes the weeks immediately after each state reached 500 cases. The primary outcomes were average Rt in the week following 500 cases and doubling time from 500 to 1000 cases. Linear and logistic regressions were performed in R to assess the impact of various NPIs while controlling for population density, GDP, and certain health metrics. This analysis was repeated for deaths with doubling time from 50 to 100 deaths and included several healthcare infrastructure control variables. Results:States that had a stay-at-home order in place at the time of their 500th case are associated with lower average Rt the following week compared to states without a stay-at-home order (p < 0.001) and are significantly less likely to have an Rt>1 (OR 0.07, 95% CI 0.01 to 0.37, p = 0.004). These states also experienced a significantly longer doubling time from 500 to 1000 cases (HR 0.35, 95% CI 0.17 to 0.72, p = 0.004). States in the highest quartile of average time spent at home were also slower to reach 1000 cases than those in the lowest quartile (HR 0.18, 95% CI 0.06 to 0.53, p = 0.002).Discussion: Few studies have analyzed the effect of statewide stay-at-home orders, school closures, and other social distancing measures in the U.S., which has faced the largest COVID-19 case burden. States with stay-at-home orders have a 93% decrease in the odds of having a positive Rt at a standardized point in disease burden. States that plan to scale back such measures should carefully monitor transmission metrics.
Background: Various non-pharmaceutical interventions (NPIs) such as stay-at-home orders and school closures have been employed to limit the spread of Coronavirus disease . This study measures the impact of social distancing policies on COVID-19 transmission in US states during the early outbreak phase to assess which policies were most effective. Methods:To measure transmissibility, we analyze the average effective reproductive number (R t ) in each state the week following its 500th case and doubling time from 500 to 1000 cases. Linear and logistic regressions were performed to assess the impact of various NPIs while controlling for population density, GDP, and certain health metrics. This analysis was repeated for deaths with doubling time to 100 deaths with several healthcare infrastructure control variables.Results: States with stay-at-home orders in place at the time of their 500th case were associated with lower average R t the following week compared to states without them (p<0.001) and significantly less likely to have an R t >1 (OR 0.07, 95% CI 0.01−0.37, p = 0.004). These states also experienced longer doubling time from 500 to 1000 cases (HR 0.35, 95% CI 0.17 −0.72, p = 0.004). States in the highest quartile of average time spent at home were also slower to reach 1000 cases than those in the lowest quartile (HR 0.18, 95% CI 0.06−0.53, p = 0.002).Conclusions: Stay-at-home orders had the largest effect of any policy analyzed. Multivariate analyses with cellphone tracking data suggest social distancing adherence drives these effects. States that plan to scale back such measures should carefully monitor transmission metrics.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.