Mohawk (Mkx) is a member of the Three Amino acid Loop Extension superclass of atypical homeobox genes that is expressed in developing tendons. To investigate the in vivo functions of Mkx, we generated Mkx −/− mice. These mice had hypoplastic tendons throughout the body. Despite the reduction in tendon mass, the cell number in tail tendon fiber bundles was similar between wild-type and Mkx −/− mice. We also observed small collagen fibril diameters and a down-regulation of type I collagen in Mkx −/− tendons. These data indicate that Mkx plays a critical role in tendon differentiation by regulating type I collagen production in tendon cells.T endons are dense, fibrous connective tissues that connect muscle to bone, transmitting the forces that allow for body movement (1). Tendon damage from overuse or degeneration due to aging is a common clinical problem because damaged tendon tissue heals very slowly and rarely recovers completely (2). The establishment of new therapies, such as regenerative medicine, for injured tendons has been delayed by a limited understanding of tendon biology (1, 3).Tendons are composed primarily of collagen fibrils that cross-link to each other to form fibers (4). A small number of tendon cells reside between parallel chains of these fibrils and synthesize the specific ECM that contains collagens and proteoglycans (4, 5). The elasticity of tendons is provided by the large amount of collagen, predominantly type I collagen and small amounts of other collagens, including types III, IV, V, and VI (4, 6-9). The proteoglycans found in tendons, including decorin, fibromodulin, biglycan, and lumican, act to lubricate and organize collagen fiber bundles (4, 5). Targeted disruption of these proteoglycans in mice leads to abnormal collagen fibrils in tendons (3, 10-13). Tendon disruptions have also been described in patients with defects in collagen production, such as Ehlers-Danlos Syndrome, in which the type I collagen gene is mutated (14). These studies indicate that the ability of tendon cells to produce ECM is important for tendon formation.Recently, it was reported that Scleraxis (Scx), a basic helix-loophelix (bHLH) transcription factor expressed in the tendon progenitors and cells of all tendon tissues (15, 16), is essential for tendon differentiation. Scx knockout mice show severe disruption of force-transmitting tendons, although ligaments, which are tissues connecting bone to bone that closely resemble tendons in their components, and short-range anchoring tendons are not affected (17). It was also reported that Scx positively regulates the expression of type I collagen, a main ECM component of tendons (18). However, the type I collagen does not completely disappear from the tendons of Scx knockout mice (17), suggesting the presence of other regulatory factors for type I collagen. The tendon differentiation mechanisms remain largely unknown, with Scx being the only known transcription factor regulating tendon differentiation.Mohawk (Mkx; also known as Irxl1) is the sole member of a newly c...
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.