We propose and develop a method to quickly and precisely determine the polarization direction of coherent terahertz electromagnetic waves generated by femtosecond laser pulses. The measurement system consists of a conventional terahertz time-domain spectroscopy system with the electro-optic (EO) sampling method, but we add a new functionality in the EO crystal which is continuously rotating with the angular frequency ω. We find a simple yet useful formulation of the EO signal as a function of the crystal orientation, which enables a lock-in-like detection of both the electric-field amplitude and the absolute polarization direction of the terahertz waves with respect to the probe laser pulse polarization direction at the same time. The single measurement finishes around two periods of the crystal rotations (∼21 ms), and we experimentally prove that the accuracy of the polarization measurement does not suffer from the long-term amplitude fluctuation of the terahertz pulses. Distribution of the measured polarization directions by repeating the measurements is excellently fitted by a gaussian distribution function with a standard deviation of σ = 0.56°. The developed technique is useful for the fast direct determination of the polarization state of the terahertz electromagnetic waves for polarization imaging applications as well as the precise terahertz Faraday or Kerr rotation spectroscopy.
We demonstrate a method for substantially improving the axial resolution of terahertz time-of-flight measurements by analyzing the time-dependent polarization direction of an elliptically polarized single-cycle terahertz electromagnetic (T-ray) pulse. We show that, at its most sensitive, the technique has an axial resolution of ∼λ/1000 (<1 μm) with a subsecond measurement time, and very clear T-ray topographic images are obtained. Such a very high axial resolution of the T-ray topography opens the way for novel industrial and biomedical applications such as fine metalworking and corneal inspection in a safe manner.
We present a method of developing a high-speed terahertz time-domain polarimeter based on an electro-optic sampling setup, which consists of a rapid polarization analysis of the probe optical beam within 1 ms with an angular resolution of ∼100 mrad using an electro-optic modulator (EOM). A fast optical delay line enabled us to obtain the vector waveform of the terahertz pulse within 100 ms. The setup does not utilize a manual/mechanical rotational stage, but the use of the polarization modulation technique employing the EOM ensures a high-speed and high-accuracy measurement of the state of polarization of terahertz waves.
We provide a frequency-domain picture of the electro-optic (EO) detection of elliptically polarized terahertz radiation utilizing the crystal angle dependence of the EO effect using zinc blende crystal symmetry. In contrast to EO detection of a linearly polarized terahertz pulse, the measured EO signal would not be a replica of the terahertz pulse, even though the phase-matching condition is completely fulfilled. However, the rotation of the EO crystal reduces the complexity, and the ellipticity and the angle of rotation of each frequency component of the elliptically polarized terahertz pulse can be determined irrespective of what kind of zinc blende crystals are used for the EO detection. We experimentally show that the ellipticity and angle of rotation are reproducibly obtained by using three different crystals with different thicknesses and compositions. Direct detection of the elliptically polarized terahertz radiation enables us to precisely determine the optical axis and retardation of a quartz crystal using the Poincaré sphere representation of the state of polarization.
We have developed a real-time terahertz time-domain polarization analyzer by using 80-MHz repetition-rate femtosecond laser pulses. Our technique is based on the spinning electro-optic sensor method, which we recently proposed and demonstrated by using a regenerative amplifier laser system; here we improve the detection scheme in order to be able to use it with a femtosecond laser oscillator with laser pulses of a much higher repetition rate. This improvement brings great advantages for realizing broadband, compact and stable real-time terahertz time-domain polarization measurement systems for scientific and industrial applications.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.