Prior research suggests that predicting defect-inducing changes, i.e., Just-In-Time (JIT) defect prediction is a more practical alternative to traditional defect prediction techniques, providing immediate feedback while design decisions are still fresh in the minds of developers. Unfortunately, similar to traditional defect prediction models, JIT models require a large amount of training data, which is not available when projects are in initial development phases. To address this flaw in traditional defect prediction, prior work has proposed cross-project models, i.e., models learned from older projects with su cient history. However, cross-project models have not yet been explored in the context of JIT prediction. Therefore, in this study, we empirically evaluate the performance of JIT cross-project models. Through a case study on 11 open source projects, we find that in a JIT cross-project context: (1) high performance within-project models rarely perform well; (2) models trained on projects that have similar correlations between predictor and dependent variables often perform well; and (3) ensemble learning techniques that leverage historical data from several other projects (e.g., voting experts) often perform well. Our findings empirically confirm that JIT cross-project models learned using other projects are a viable solution for projects with little historical data. However, JIT cross-project models perform best when the data used to learn them is carefully selected.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.