The hepatic transport of bile acid conjugates was studied in the Eisai hyperbilirubinuria rat, a Sprague-Dawley mutant rat with conjugated hyperbilirubinemia. Serum bile acid levels were increased, bile acid-independent bile flow was decreased and biliary glutathione concentrations were markedly decreased in the Eisai hyperbilirubinuria rat. Biliary excretion of sulfobromophthalein was markedly impaired and almost no glutathione conjugate was excreted in the bile of the Eisai hyperbilirubinuria rat. Biliary excretion of lithocholate-3-O-glucuronide and lithocholate-3-sulfate in the Eisai hyperbilirubinuria rat was markedly delayed, whereas that of lithocholate was only slightly delayed. After [14C]chenodeoxycholate infusion (1 mumol/min/100 gm for 60 min), the increases in bile flow and biliary excretion of isotope in the Eisai hyperbilirubinuria rat were not so prominent as those observed in control rats, and the glucuronide of chenodeoxycholate, which constituted about 15% of biliary chenodeoxycholate in control rats, was not observed in the Eisai hyperbilirubinuria rat. Initial uptake of lithocholate and its glucuronide and sulfate by isolated hepatocytes was not impaired in the Eisai hyperbilirubinuria rat; the profiles of cytosolic bile acid binding proteins in Eisai hyperbilirubinuria rat liver were identical to those in control liver. These data indicate that the Eisai hyperbilirubinuria rat has excretory impairment of organic anions, bile acid glucuronide and sulfate and that it has characteristics very similar to those of the hyperbilirubinemic mutant Wistar rats TR- and GY.
The effects of bile duct ligation on biliary excretion of bile acids, glutathione, and lipids were studied in the rat. The bile duct of the rat was ligated for three days. The biliary bile acid excretion after bile duct cannulation was higher at first, but after 90 min became lower than that in the control rat. The bile flow in the bile duct-ligated rat was higher after bile duct cannulation and gradually decreased to the same level as in the control rat. Biliary glutathione excretion, which has been suggested to be a driving force for the bile acid-independent canalicular bile flow, was markedly decreased in the bile duct-ligated rat. The mannitol clearance was increased and the bile ductules showed proliferation in the bile duct-ligated rat, suggesting an increase in the ductular bile flow. Biliary excretion of lithocholate glucuronide was more markedly impaired than that of taurocholate. When taurocholate was infused at higher rates, which increases bile flow and biliary excretion of bile acid and lipids in the control rat, biliary bile acid and lipid excretion remained constant in the bile duct-ligated rat. These findings indicate that, in the bile duct-ligated rat, the ductular bile flow was increased and bile acid-independent canalicular bile flow was decreased and that, although the biliary excretion of bile acids was not as impaired as that of organic anions, the capacity of bile acid and lipid excretion was markedly decreased.
Estradiol-17beta-glucuronide (E217G) is a cholestatic agent and is considered to be related to the pathogenesis of intrahepatic cholestasis of pregnancy. In the current study, we examined the mechanism of the biliary excretion of E217G and estradiol metabolites in rats. Biliary excretion of tracer doses of [3H]estradiol-17beta-glucuronide and [14C]estradiol or [3H]taurocholate and ]14C]vinblastine, a P-glycoprotein (P-GP) substrate, intravenously administered as a bolus to bile-drained control rats or EHBR was studied. Biliary excretion of E217G and estradiol metabolites EHBR was markedly delayed. Analyses of biliary metabolites after estradiol injection showed less polar conjugates in EHBR. In contrast, the excretion of taurocholate and vinblastine (VLB) was only slightly delayed in EHBR. Although phenothiazine treatment to induce the expression of P-GP increased biliary vinblastine excretion, it did not affect biliary excretion of a tracer dose of [3H]estradiol-17beta-glucuronide. However, phenothiazine treatment inhibited the cholestasis induced by E217G infused at the rate of 0.075 micromol/min/100g for 20 minutes and increased biliary E217G excretion. Sulfobromophthalein infusion (0.2 micromol/min/100 g body 0 weight) markedly inhibited the biliary excretion of E217G and estradiol metabolites, whereas dibromosulfophthalein (DBSP) at the same infusion rate had no effect. These findings indicate that EG17G is excreted into bile by a canalicular organic anion carrier for sulfobromopthalein (BSP), not for DBSP, under physiological conditions, and that P-GP influences E217G excretion only at a high dose. under physiological conditions, and that P-GP influence s E217G excretion only at a high dose.
Jejunal absorption of ursodeoxycholate was inhibited by colestimide to a similar extent as other dihydroxy bile acids, whereas that of cholate was not inhibited under the same conditions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.