Human acute myeloid leukemia (AML) originates from rare leukemia stem cells (LSCs). Because these chemotherapy-resistant LSCs are thought to underlie disease relapse, effective therapeutic strategies specifically targeting these cells may be beneficial. Here, we report identification of a primary human LSC gene signature and functional characterization of human LSC-specific molecules in vivo in a mouse xenotransplantation model. In 32 of 61 (53%) patients with AML, either CD32 or CD25 or both were highly expressed in LSCs. CD32-or CD25-positive LSCs could initiate AML and were cell cycle-quiescent and chemotherapy-resistant in vivo. Normal human hematopoietic stem cells depleted of CD32-and CD25-positive cells maintained long-term multilineage hematopoietic reconstitution capacity in vivo, indicating the potential safety of treatments targeting these molecules. In addition to CD32 and CD25, quiescent LSCs within the bone marrow niche also expressed the transcription factor WT1 and the kinase HCK. These molecules are also promising targets for LSC-specific therapy.
Multicellular organisms achieve final body shape and size by coordinating cell proliferation, expansion, and differentiation. Loss of function in the Arabidopsis ERECTA (ER) receptor-kinase gene confers characteristic compact inflorescence architecture, but its underlying signaling pathways remain unknown. Here we report that the expression of ER in the phloem is sufficient to rescue compact er inflorescences. We further identified two EPIDERMAL PATTERNING FACTOR-LIKE (EPFL) secreted peptide genes, EPFL4 and EPFL6/CHALLAH (CHAL), as redundant, upstream components of ER-mediated inflorescence growth. The expression of EPFL4 or EPFL6 in the endodermis, a layer adjacent to phloem, is sufficient to rescue the er-like inflorescence of epfl4 epfl6 plants. EPFL4 and EPFL6 physically associate with ER in planta. Finally, transcriptome analysis of er and epfl4 epfl6 revealed a potential downstream component as well as a role for plant hormones in EPFL4/6-and ER-mediated inflorescence growth. Our results suggest that intercell layer communication between the endodermis and phloem mediated by peptide ligands and a receptor kinase coordinates proper inflorescence architecture in Arabidopsis.peptide signal | pedicel elongation | cell-cell communication
The mammalian GTP-binding protein GSPT, whose carboxyl-terminal sequence is homologous to the eukaryotic elongation factor EF1␣, binds to the polypeptide chain releasing factor eRF1 to function as eRF3 in the translation termination. The amino-terminal domain of GSPT was, however, not required for the binding. Search for other GSPT-binding proteins in yeast two-hybrid screening system resulted in the identification of a cDNA encoding polyadenylate-binding protein (PABP), whose amino terminus is associating with the poly(A) tail of mRNAs presumably for their stabilization. The interaction appeared to be mediated through the carboxyl-terminal domain of PABP and the aminoterminal region of GSPT. Interestingly, multimerization of PABP with poly(A), which is ascribed to the action of its carboxyl-terminal domain, was completely inhibited by the interaction with the amino-terminal domain of GSPT. These results indicate that GSPT/eRF3 may play important roles not only in the termination of protein synthesis but also in the regulation of mRNA stability. Thus, the present study is the first report showing that GSPT/eRF3 carries the translation termination signal to 3-poly(A) tail ubiquitously present in eukaryotic mRNAs.The yeast GSPT gene, whose product is a GTP-binding protein structurally related to the translation elongation factor EF1␣, was first isolated based on the ability to complement a temperature-sensitive gst1 mutation of Saccharomyces cerevisiae (1). Because DNA synthesis was substantially arrested at the nonpermissive temperature in this mutant, the GSPT gene product appears to play an essential role at the G 1 to S phase transition in the yeast cell cycle. On the other hand, SUP35 was cloned by another group investigating omnipotent suppressor mutant of S. cerevisiae, and the gene turned out to be identical to GSPT (2). Omnipotent suppressor is a class of nonsense suppressors that is recessive and effective toward three types of nonsense codons (3). Mutations in the GSPT/ SUP35 gene were shown to increase the level of translational ambiguity (4, 5), suggesting that this gene product may also function as a positive regulator of translational accuracy in yeast.In eukaryotic protein synthesis, all three types of termination codons are directly recognized by a polypeptide chain releasing factor, eRF1, to release synthesized polypeptide chain from ribosome, and another releasing factor, eRF3, appears to be essentially required for the ribosomal binding of eRF1. Recently, it was reported in S. cerevisiae (6) and Xenopus laevis (7) that the product of the GSPT/SUP35 gene forms a complex with eRF1 to function as eRF3. We previously cloned a human homologue of the yeast GSPT gene (8) and more recently isolated two mouse GSPT genes, the counterpart of human GSPT1 and a novel member of the GSPT gene family, GSPT2 (9). The mammalian GSPT1 and GSPT2 could also associate with eRF1 to function as eRF3, although the two GSPTs were clearly distinct from each other in terms of their amino-terminal sequences, the expression...
The phytohormone auxin is the information carrier in a plethora of developmental and physiological processes in plants. It has been firmly established that canonical, nuclear auxin signalling acts through regulation of gene transcription. Here, we combined microfluidics, live imaging, genetic engineering and computational modelling to reanalyse the classical case of root growth inhibition by auxin. We show that Arabidopsis roots react to addition and removal of auxin by extremely rapid adaptation of growth rate. This process requires intracellular auxin perception but not transcriptional reprogramming. The formation of the canonical TIR1/AFB-Aux/IAA co-receptor complex is required for the growth regulation, hinting to a novel, non-transcriptional branch of this signalling pathway. Our results challenge the current understanding of root growth regulation by auxin and suggest another, presumably non-transcriptional, signalling output of the canonical auxin pathway.
In eukaryotes, shortening of the 3-poly(A) tail is the rate-limiting step in the degradation of most mRNAs, and two major mRNA deadenylase complexes-Caf1-Ccr4 and Pan2-Pan3-play central roles in this process, referred to as deadenylation. However, the molecular mechanism triggering deadenylation remains elusive. Previously, we demonstrated that eukaryotic releasing factor eRF3 mediates deadenylation and decay of mRNA in a manner coupled to translation termination. Here, we report the mechanism of mRNA deadenylation. The eRF3-mediated deadenylation is catalyzed by both Caf1-Ccr4 and Pan2-Pan3. Interestingly, translation termination complexes eRF1-eRF3, Pan2-Pan3, and Caf1-Ccr4 competitively interact with polyadenylate-binding protein PABPC1. In each complex, eRF3, Pan3, and Tob, respectively, mediate PABPC1 binding, and a combination of a PAM2 motif and a PABC domain is commonly utilized for their contacts. A translation-dependent exchange of eRF1-eRF3 for the deadenylase occurs on PABPC1. Consequently, PABPC1 binding leads to the activation of Pan2-Pan3 and Caf1-Ccr4. From these results, we suggest a mechanism of mRNA deadenylation by Pan2-Pan3 and Caf1-Ccr4 in cooperation with eRF3 and PABPC1.[Keywords: Translation termination; deadenylation; eRF3; PABPC1] Supplemental material is available at http://www.genesdev.org.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.