Face recognition in video surveillance helps to identify an individual by comparing facial features of given photograph or sketch with a video for criminal investigations. Generally, face sketch is used by the police when suspect’s photo is not available. Manual matching of facial sketch with suspect’s image in a long video is tedious and time-consuming task. To overcome these drawbacks, this paper proposes an accurate face recognition technique to recognize a person based on his sketch in an unconstrained video surveillance. In the proposed method, surveillance video and sketch of suspect is taken as an input. Firstly, input video is converted into frames and summarized using the proposed quality indexed three step cross search algorithm. Next, faces are detected by proposed modified Viola-Jones algorithm. Then, necessary features are selected using the proposed salp-cat optimization algorithm. Finally, these features are fused with scale-invariant feature transform (SIFT) features and Euclidean distance is computed between feature vectors of sketch and each face in a video. Face from the video having lowest Euclidean distance with query sketch is considered as suspect’s face. The proposed method’s performance is analyzed on Chokepoint dataset and the system works efficiently with 89.02% of precision, 91.25% of recall and 90.13% of F-measure.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.