Altered expression and/or localization of cysteine cathepsins is believed to involve in thyroid diseases including cancer. Here, we examined the localization of cathepsins B and V in human thyroid tissue sections of different pathological conditions by immunolabeling and morphometry.Cathepsin B was mostly found within endo-lysosomes as expected. In contrast, cathepsin V was detected within nuclei, predominantly in cells of cold nodules, follicular and papillary thyroid carcinoma tissue, while it was less often detected in this unusual localization in hot nodule and goiter tissue. To understand the significance of nuclear cathepsin V in thyroid cells, this study aimed to establish a cellular model of stable nuclear cathepsin V expression. As representative of a specific form lacking the signal peptide and part of the propeptide, N-terminally truncated cathepsin V fused to eGFP recapitulated the nuclear localization of endogenous cathepsin V throughout the cell cycle in Nthy-ori 3-1 cells. Interestingly, the N-terminally truncated cathepsin V-eGFP was more abundant in the nuclei during S phase. These findings suggested a possible contribution of nuclear cathepsin V forms to cell cycle progression. Indeed, we found that Nterminally truncated cathepsin V-eGFP expressing cells were more proliferative than those expressing full-length cathepsin V-eGFP or wild type controls. We conclude that a specific molecular form of cathepsin V localizes to the nucleus of thyroid epithelial and carcinoma cells, where it might involve in deregulated pathways leading to hyperproliferation. These findings highlight the necessity to better understand cathepsin trafficking in health and disease. In particular, cell type specificity of mislocalization of cysteine cathepsins, which otherwise act in a functionally redundant manner, seems to be important to understand their non-canonical roles in cell cycle progression.
Background Lysosomal cysteine protease cathepsin V has previously been shown to exhibit elevated expression in breast cancer tissue and be associated with distant metastasis. Research has also identified that cathepsin V expression is elevated in tumour tissues from numerous other malignancies, but despite this, there has been limited examination of the function of this protease in cancer. Here we investigate the role of cathepsin V in breast cancer in order to delineate the molecular mechanisms by which this protease contributes to tumourigenesis. Methods Lentiviral transductions were used to generate shRNA cell line models, with cell line validation undertaken using RQ-PCR and Western blotting. Phenotypic changes of tumour cell biology were examined using clonogenic and invasion assays. The relationship between GATA3 expression and cathepsin V was primarily analysed using Western blotting. Site-directed mutagenesis was used to generate catalytic mutant and shRNA-resistant constructs to confirm the role of cathepsin V in regulating GATA3 expression. Results We have identified that elevated cathepsin V expression is associated with reduced survival in ER-positive breast cancers. Cathepsin V regulates the expression of GATA3 in ER-positive breast cancers, through promoting its degradation via the proteasome. We have determined that depletion of cathepsin V results in elevated pAkt-1 and reduced GSK-3β expression, which rescues GATA3 from proteasomal degradation. Conclusions In this study, we have identified that cysteine protease cathepsin V can suppress GATA3 expression in ER-positive breast cancers by facilitating its turnover via the proteasome. Therefore, targeting cathepsin V may represent a potential therapeutic strategy in ER-positive breast cancers, by restoring GATA3 protein expression, which is associated with a more favourable clinical outcome.
Expression of the deubiquitinase USP17 is induced by multiple stimuli, including cytokines (IL-4/6), chemokines (IL-8, SDF1), and growth factors (EGF), and several studies indicate it is required for cell proliferation and migration. However, the mechanisms via which USP17 impacts upon these cellular functions are unclear.Here, we demonstrate that USP17 depletion prevents peripheral lysosome positioning, as well as trafficking of lysosomes to the cell periphery in response to EGF stimulation. Overexpression of USP17 also increases secretion of the lysosomal protease cathepsin D. In addition, USP17 depletion impairs plasma membrane repair in cells treated with the pore-forming toxin streptolysin O, further indicating that USP17 is required for lysosome trafficking to the plasma membrane. Finally, we demonstrate that USP17 can deubiquitinate p62, and we propose that USP17 can facilitate peripheral lysosome trafficking by opposing the E3 ligase RNF26 to untether lysosomes from the ER and facilitate lysosome peripheral trafficking, lysosome protease secretion, and plasma membrane repair.
The significance of cysteine cathepsins for the liberation of thyroid hormones from the precursor thyroglobulin was previously shown by in vivo and in vitro studies. Cathepsin L is most important for thyroglobulin processing in mice. The present study aims at specifying the possible contribution of its closest relative, cysteine cathepsin L2/V, to thyroid function. Immunofluorescence analysis on normal human thyroid tissue revealed its predominant localization at the apical plasma membrane of thyrocytes and within the follicle lumen, indicating the secretion of cathepsin V and extracellular tasks rather than its acting within endo-lysosomes. To explore the trafficking pathways of cathepsin V in more detail, a chimeric protein consisting of human cathepsin V tagged with green fluorescent protein (GFP) was stably expressed in the Nthy-ori 3-1 thyroid epithelial cell line. Colocalization studies with compartment-specific markers and analyses of post-translational modifications revealed that the chimeric protein was sorted into the lumen of the endoplasmic reticulum and subsequently transported to the Golgi apparatus, while being N-glycosylated. Immunoblotting showed that the chimeric protein reached endo-lysosomes and it became secreted from the transduced cells. Astonishingly, thyroid stimulating hormone (TSH)-induced secretion of GFP-tagged cathepsin V occurred as the proform, suggesting that TSH upregulates its transport to the plasma membrane before it reaches endo-lysosomes for maturation. The proform of cathepsin V was found to be reactive with the activity-based probe DCG-04, suggesting that it possesses catalytic activity. We propose that TSH-stimulated secretion of procathepsin V is the default pathway in the thyroid to enable its contribution to thyroglobulin processing by extracellular means.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations –citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.