a b s t r a c tThis study aimed to investigate the effects of chitosan on dry matter intake (DMI), nutrient digestibility, ruminal fermentation, and blood metabolites in Nellore steers. Eight ruminally cannulated Nellore steers (540 ± 28.5 kg of BW) were used in a replicated 4 × 4 Latin square design, with 21-d of experimental periods. The animals were randomly assigned to the following treatments: control (without chitosan addition; Q0), Q50, Q100 and Q150, by dosing 50, 100 and 150 mg/kg BW chitosan, respectively, through the cannula. Although there was no difference on DMI, chitosan addition increased dry matter, neutral detergent fiber, and crude protein apparent total-tract digestibility (P < 0.05). Ruminal pH was not affected, whereas NH 3 N concentration was quadratically affected with chitosan addition (P = 0.01). There were no differences in total volatile fatty acids concentration among treatments. Chitosan had a quadratic effect on propionate and butyrate, whereas acetate molar proportions decreased linearly (P < 0.05). Acetate:propionate ratio decreased with chitosan addition (P < 0.05). Plasma glucose concentration was higher with chitosan addition (P < 0.05); however, total protein, urea, aspartate aminotransferase, and gamma-glutamyl transferase were not affected by chitosan. Addition of chitosan altered ruminal fermentation, improved nutrient digestibility, and did not appear to damage animal health.
ObjectiveTwo experiments were performed to evaluate the effects of coated slow-release urea on nutrient digestion, ruminal fermentation, nitrogen utilization, blood glucose and urea concentration (Exp 1), and average daily gain (ADG; Exp 2) of steers.MethodsExp 1: Eight ruminally fistulated steers [503±28.5 kg body weight (BW)] were distributed into a d 4×4 Latin square design and assigned to treatments: control (CON), feed grade urea (U2), polymer-coated slow-release urea A (SRA2), and polymer-coated slow-release urea B (SRB2). Dietary urea sources were set at 20 g/kg DM. Exp 2: 84 steers (350.5±26.5 kg initial BW) were distributed to treatments: CON, FGU at 10 or 20 g/kg diet DM (U1 and U2, respectively), coated SRA2 at 10 or 20 g/kg diet DM (SRA1 and SRA2, respectively), and coated SRB at 10 or 20 g/kg diet DM (SRB1 and SRB2, respectively).ResultsExp 1: Urea treatments (U2+SRA2+SRB2) decreased (7.4%, p = 0.03) the DM intake and increased (11.4%, p<0.01) crude protein digestibility. Coated slow-release urea (SRA2+SRB2) showed similar nutrient digestibility compwared to feed grade urea (FGU). However, steers fed SRB2 had higher (p = 0.02) DM digestibility compared to those fed SRA2. Urea sources did not affect ruminal fermentation when compared to CON. Although, coated slow-release urea showed lower (p = 0.01) concentration of NH3-N (−10.4%) and acetate to propionate ratio than U2. Coated slow-release urea showed lower (p = 0.02) urinary N and blood urea concentration compared to FGU. Exp 2: Urea sources decreased (p = 0.01) the ADG in relation to CON. Animals fed urea sources at 10 g/kg DM showed higher (12.33%, p = 0.01) ADG compared to those fed urea at 20 g/kg DM.ConclusionFeeding urea decreased the nutrient intake without largely affected the nutrient digestibility. In addition, polymer-coated slow-release urea sources decreased ruminal ammonia concentration and increased ruminal propionate production. Urea at 20 g/kg DM, regardless of source, decreased ADG compared both to CON and diets with urea at 10 g/kg DM.
The objective of this study was to evaluate the effect of whole raw soybean (WRS) in the finishing diet of Nellore cattle on productive performance, carcass traits, meat quality, fatty acid profile of meat, and blood parameters. In a completely randomized design, 52 Nellore bulls (mean body weight ± SD: 380 ± 34 kg) were allotted for 84 days. The animals received the following diets with a forage: concentrate ratio of 40/60: (i) WRS0: control diet without soybean grains; (ii) WRS8: diet containing 8% WRS in dry matter basis; (iii) WRS16: diet containing 16% WRS, and (iv) WRS24: diet containing 24% WRS. At intervals of 28 days, the animals were weighed, muscle and adipose tissue was analysed by ultrasound, and blood samples were collected. The animals were slaughtered on day 85 and liver weight and hot carcass weight were measured during slaughter. The pH and carcass dressing were calculated at 24 h after slaughter. Longissimus dorsi muscle samples were collected for the determination of fatty acid profile of meat, ether extract, tenderness and sensory analysis of meat aged for 14 days. Blood cholesterol content increased linearly with increasing proportion of whole raw soybean grains. The diet did not affect performance or carcass attributes. The WRS8 had the highest shear force values. In fatty acid profile, C14:0 decreased (p = 0.05), whereas 16:1, 20:0 and 20:1 fatty acids increased linearly with increasing proportion of WRS (p < 0.05). However, concentration of conjugated linoleic acid cis 9, trans 11 and 17:0 increased with WRS24 and WRS16. In the sensory analysis, WRS24 was more tender with respect to the other treatments (p < 0.05). Finally, the inclusion of WRS in the finishing diet of feedlot Nellore bulls only evidenced little changes in fatty acid profile and tenderness, in animals fed diets containing 16 or 24% soybean.
Metabolite profile has been used to understand the causes of variability in beef tenderness, but still little is known about how metabolites contribute to beef quality. Therefore, this study was carried out to evaluate how meat metabolites and their metabolic pathways correlate to variability in beef tenderness. Carcasses from 60 noncastrated male cattle were selected, and three 2.5-cm-thick longissimus thoracis steaks were obtained and aged (0°C to 4°C) for 7d. Warner-Bratzler shear force (WBSF) was performed (steak 1). Based on WBSF data, 2 tenderness classes (n = 30; 15 per class [tender and tough]) were created to perform sarcomere length (steak 2) and metabolom ic analysis (steak 3). Meat ultimate pH did not differ between tenderness classes. However, steaks classified as tender had greater sarcomere length (P = 0.019) than those classified as tough. Acetyl-carnitine (P = 0.026), adenine (P = 0.026), beta-alanine (P = 0.005), fumarate (P = 0.022), glutamine (P = 0.043), and valine (P = 0.030) concentration were higher in tender beef compared with tough beef. The 4 most important compounds differing between tender and tough beef were lactate, glucose, creatine, and glutamine, which may indicate that metabolic pathways such as D-glutamine and D-glutamate metabolism, beta-alanine metabolism, purine metabolism, and tricarboxylic acid cycle affected the tenderness classes. Beta-alanine (r = − 0.45), acetyl-carnitine (r = − 0.40), fumarate (r = − 0.38), valine (r = − 0.34), glucose (r = − 0.32), glutamine (r = − 0.31), and adenine (r = −0.31) were negatively correlated with WBSF values. Metabolite profile in tender beef indicated a greater oxidative metabolism, which promoted modifications in the muscle structure and proteolysis, favoring its tenderization.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.