Using Metro Manila as a case study, this paper investigates whether and how its current urban form and pattern of transformation can be explained by the theories of gentrification developed within the cities of the Global North. Two core features of gentrification are examined: the production of exclusive spaces and the related displacement of the poor or low-income households. The uneven development across the metropolis is discussed in terms of the longstanding tension between the weak city-state and the dominance of the landed elites. Falling through the gap are the urban poor, who arrange their housing within informal settlements and are exposed to multiple vulnerabilities, including the risk of displacement. Drawing on an empirical study of the displacement impacts of a public transportation project, this paper provides useful insights into how gentrification-induced displacement may unfold if land-based development takes place in a densely populated metropolis such as Metro Manila.
GATA-1 is an erythroid activator that binds β-globin gene promoters and DNase I hypersensitive sites (HSs) of the β-globin locus control region (LCR). We investigated the direct role of GATA-1 interaction at the LCR HS2 enhancer by mutating its binding sites within minichromosomes in erythroid cells. Loss of GATA-1 in HS2 did not compromise interaction of NF-E2, a second activator that binds to HS2, nor was DNase I hypersensitivity at HS2 or the promoter of a linked ε-globin gene altered. Reduction of NF-E2 using RNAi confirmed the overall importance of this activator in establishing LCR HSs. However, recruitment of the histone acetyltransferase CBP and RNA pol II to HS2 was diminished by GATA-1 loss. Transcription of ε-globin was severely compromised with loss of RNA pol II from the transcription start site and reduction of H3 acetylation and H3K4 di- and tri-methylation in coding sequences. In contrast, widespread detection of H3K4 mono-methylation was unaffected by loss of GATA-1 in HS2. These results support the idea that GATA-1 interaction in HS2 has a prominent and direct role in co-activator and pol II recruitment conferring active histone tail modifications and transcription activation to a target gene but that it does not, by itself, play a major role in establishing DNase I hypersensitivity.
This article seeks to understand the ways in which urban livelihoods are affected by developmentinduced displacement, with a particular focus on residents remaining in the locality. Through an empirical case study of a railway upgrading project in Metro Manila, the article investigates livelihood impacts of large-scale demolition and displacement, which varied depending on whether the physical capital of remaining residents declined due to land clearance and the extent to which they relied on the local livelihood network established with displaced settlers. In comparison, households remained intact when they had little engagement with the local informal economy.
Polycyclic Aromatic Hydrocarbons (PAHs) and n-alkanes in particulate matter with an aerodynamic diameter of 2.5 micrometers or less (PM2.5) were quantified at Seoul, Korea in 2018. The seasonal differences in the total concentration of PAHs and n-Alkanes were clear, where winter showed a higher concentration than that of summer. Compared to the PAHs measurements in 2002 at Seoul, the sum of PAHs concentrations in 2018 were reduced from 26.6 to 5.6 ng m−3. Major sources of the observed PAHs and n-alkanes were deduced from various indicators such as diagnostic ratios for PAHs and Cmax, CPI, and WNA (%) indices for n-alkanes. It was found that in winter coal and biomass combustions, and vehicular exhaust were major sources, while, in summer vehicular exhaust was major source. In addition, in winter, major emission sources were located outside of Seoul. The health effect from the recent level of PAHs was estimated and compared to the previous studies observed in Seoul, and it was found that, recently, the toxicity of PAHs in PM2.5 was significantly decreased, except for in the winter.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.