We fabricated silicon nanowires (SiNWs) using a metalcatalyzed electroless etching method, which is known to be a low-cost and simple technique. The SiNW arrays with a length of 540 nm were used as a substrate of SiNWs/PEDOT:PSS hybrid solar cell. Furthermore, gold nanoparticles (AuNPs) were used to improve the light absorption of the device due to localized surface plasmon excitation. The results show that the short-circuit current density and the power conversion efficiency increased from 22.1 mA/cm 2 to 26.0 mA/cm 2 and 6.91% to 8.56%, respectively. The advantage of a higher interface area between the organic and inorganic semiconductors was established by using SiNW arrays and higher absorption light incorporated with AuNPs for improving the performance of the developed solar cell.
In this study, silicon nanowires (SiNWs) with different lengths was fabricated using the metal-catalyzed electroless etching (MCEE) method and used as the base structure of an inorganic semiconductor hybrid solar cell. This technique is economically attractive and allows us to easily control the physical nanostructure of the nanowires to match the light trapping mechanism of the 3D-structured hybrid solar cell. The length of the nanowire linearly increases with etching times. For solar cell fabrication, poly(3,4-ethylene dioxythiophene): poly(styrene sulfonate) (PEDOT: PSS) was used as an organic semiconductor part. The plasmonic-induced light-trapping enhancement of indium tin oxide nanoparticles (ITO NPs) and gold nanoparticles (AuNPs) mixed with PEDOT:PSS was adapted to improve solar cell performance. It was found that the hybrid solar cell, fabricated from SiNWs with 5 minutes-etching time, yielded the highest power conversion efficiency (PCE). Furthermore, using ITO NPs and AuNPs in a hole-transport layer of the SiNWs hybrid solar cell can improve the PCE to 50% more than the reference hybrid solar cell. The hybrid solar cell using the concentration between PEDOT:PSS and ITO NPs of 1:1/5 shows the highest PCE of 8.33%.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.