Most of the existing license plate (LP) detection systems have shown significant development in the processing of the images, with restrictions related to environmental conditions and plate variations. With increased mobility and internationalization, there is a need to develop a universal LP detection system, which can handle multiple LPs of many countries and any vehicle, in an open environment and all weather conditions, having different plate variations. This paper presents a novel LP detection method using different clustering techniques based on geometrical properties of the LP characters and proposed a new character extraction method, for noisy/missed character components of the LP due to the presence of noise between LP characters and LP border. The proposed method detects multiple LPs from an input image or video, having different plate variations, under different environmental and weather conditions because of the geometrical properties of the set of characters in the LP. The proposed method is tested using standard media-lab and Application Oriented License Plate (AOLP) benchmark LP recognition databases and achieved the success rates of 97.3% and 93.7%, respectively. Results clearly indicate that the proposed approach is comparable to the previously published papers, which evaluated their performance on publicly available benchmark LP databases.
Summary
In recent decades, intracranial hemorrhage detection from computed tomography (CT) scans has gained considerable attention among researchers in the medical community. The major problem in dealing with the Radiological Society of North America (RSNA) dataset is a three dimensional representation of CT scan, where the labeled data are scarce and hard to obtain. To highlight this problem, a novel learned fully connected separable convolutional network is proposed in this research article. After collecting the CT scans, data augmentation is used to generate multiple image variations to improve the capacity of the proposed model generalization. Based on the albumentations library, the transformations are selected for data augmentation such as brightness adjustment, horizontal flipping, shifting, rotation, and scaling. The intracranial hemorrhage subtype classification is accomplished utilizing a learned fully connected separable convolutional network which significantly classifies six classes as any, intraparenchymal, subarachnoid, epidural, intraventricular, and subdural. In the resulting phase, the learned fully connected separable convolutional network obtained an average accuracy of 98.63%, sensitivity of 73.32%, specificity of 99.49%, and area under the curve of 98.98%, where the obtained results are effective compared with ResNet‐50, SE‐ResNeXt‐50, ResNeXt‐101, and ResNeXt‐101 with bidirectional long short term memory network.
COVID-19 pandemic has a significant impact on the global health and daily lives of people living over the globe. Several initial tests are based on the detecting of the genetic material of the coronavirus, and they have a minimum detection rate with a time-consuming process. To overcome this issue, radiological images are recommended where chest X-rays (CXRs) are employed in the diagnostic process. This article introduces a new Multi-modal fusion of deep transfer learning (MMF-DTL) technique to classify COVID-19. The proposed MMF-DTL model involves three main processes, namely pre-processing, feature extraction, and classification. The MMF-DTL model uses three DL models namely VGG16, Inception v3, and ResNet 50 for feature extraction. Since a single modality would not be adequate to attain an effective detection rate, the integration of three approaches by the use of decision-based multimodal fusion increases the detection rate. So, a fusion of three DL models takes place to further improve the detection rate. Finally, a softmax classifier is employed for test images to a set of six different. A wide range of experimental result analyses is carried out on the Chest-X-Ray dataset. The proposed fusion model is found to be an effective tool for COVID-19 diagnosis using radiological images with the average
sens
y
of 92.96%,
spec
y
of 98.54%,
prec
n
of 93.60%,
accu
y
of 98.80%,
F
score
of 93.26% and kappa of 91.86%.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.