Numerous studies indicate that the genome of higher eukaryotes is organized into distinct chromosome territories and that the 3-D arrangement of these territories may be closely connected to genomic function and the global regulation of gene expression. Despite this progress, the degree of non-random arrangement remains unclear and no overall model has been proposed for chromosome territory associations. To address this issue, a re-FISH approach was combined with computational analysis to analysis the pair-wise associations for six pairs of human chromosomes (chr #1, 4, 11, 12, 16, 18) in the G(0) state of normal human WI38 lung fibroblast and MCF10A epithelial breast cells. Similar levels of associations were found in WI38 and MCF10A for several of the chromosomes whereas others showed striking differences. A novel computational geometric approach, the generalized median graph (GMG), revealed a preferred probabilistic arrangement distinct for each cell line. Statistical analysis demonstrated that approximately 50% of the associations depicted in the GMG models are present in each individual nucleus. A nearly twofold increase of chromosome 4/16 associations in a malignant breast cancer cell line (MCFCA1a) compared to the related normal epithelial cell line (MCF10A) further demonstrates cancer related changes in chromosome arrangements. Our findings of highly preferred chromosome association profiles that are cell type specific and undergo alterations in cancer cells, lead us to propose a probabilistic chromosome code whereby the 3-D association profile of chromosomes contributes to the functional landscape of the cell nucleus, the global regulation of gene expression and the epigenetic state of chromatin.
We used a combination of spectral karyotyping, array comparative genomic hybridization, and cDNA microarrays to gain insights into the structural and functional changes of the genome in the MCF10 human breast cancer progression model cell lines. Spectral karyotyping data showed several chromosomal aberrations and array comparative genomic hybridization analysis identified numerous genomic gains and losses that might be involved in the progression toward cancer. Analysis of the expression levels of genes located within these genomic regions revealed a lack of correlation between chromosomal gains and losses and corresponding up-regulation or downregulation for the majority of the f1,000 genes analyzed in this study. We conclude that other mechanisms of gene regulation that are not directly related to chromosomal gains and losses play a major role in breast cancer progression. [Cancer Res 2009;69(14):5946-53]
The replication timing of 9 genes commonly involved in cancer was investigated in the MCF10 cell lines for human breast cancer progression. Six of these nine genes are part of a constellation of tumor suppressor genes that play a major role in familial human breast cancer (TP53, ATM, PTEN, CHK2, BRCA1 and BRCA2). Three other genes are involved in a large number of human cancers including breast as either tumor suppressors (RB1 and RAD51) or as an oncogene (cMYC). Five of these nine genes (TP53, RAD51, ATM, PTEN and cMYC) show significant differences (p< 0.05) in replication timing between MCF10A normal human breast cells and the corresponding malignant MCF10CA1a cells. These differences are specific to the malignant state of the MCF10CA1a cells since there were no significant differences in the replication timing of these genes between normal MCF10A cells and the non-malignant cancer MCF10AT1 cells. Microarray analysis further demonstrated that three of these five genes (TP53, RAD51 and cMYC) showed significant changes in gene expression (≥ 2-fold) between normal and malignant cells. Our findings demonstrate an alteration in the replication timing of a small subset of cancer related genes in malignant breast cancer cells. These alterations partially correlate with the major transcriptional changes characteristic of the malignant state in these cells.
Undifferentiated human epidermal keratinocytes are self-renewing stem cells that can be induced to undergo a program of differentiation by varying the calcium chloride concentration in the culture media. We utilize this model of cell differentiation and a 3D chromosome painting technique to document significant changes in the radial arrangement, morphology, and interchromosomal associations between the gene poor chromosome 18 and the gene rich chromosome 19 territories at discrete stages during keratinocyte differentiation. We suggest that changes observed in chromosomal territorial organization provides an architectural basis for genomic function during cell differentiation and provide further support for a chromosome territory code that contributes to gene expression at the global level.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.