In this paper, the performances of reinforced concrete (RC) beams strengthened in shear with steel fiber-reinforced concrete (SFRC) panels are investigated through experiment, analytical computation, and numerical analysis. An experimental program of RC beams strengthened by using SFRC panels, which were attached to both sides of the beams, is carried out to investigate the effects of fiber volume fraction, connection type, and number and diameter of bolts on the structural responses of the retrofitted beams. The current shear resisting model is also employed to discuss the test data considering shear contribution of SFRC panels. The experimental results indicate that the shear effectiveness of the beams strengthened by using SFRC panels is significantly improved. A three-dimensional (3D) nonlinear finite element (FE) analysis adopting ABAQUS is also conducted to simulate the beams strengthened in shear with SFRC panels. The investigation reveals the good agreement between the experimental and analytical results in terms of the mechanical behaviors. To complement the analytical study, a parametric study is performed to further evaluate the influences of panel thickness, compressive strength of SFRC, and bolt pattern on the performances of the beams. Based on the numerical and experimental analysis, a shear resisting model incorporating the simple formulation of average tensile strength perpendicular to the diagonal crack of the strengthened SFRC panels is proposed with the acceptable accuracy for predicting the shear contribution of the SFRC system under various effects.
The objective of this research is to propose a simple and accurate prediction method for the shear capacity of reinforced concrete beams with steel fiber (RSF beams). Steel fiber reinforced concrete (SFRC) is being widely used nowadays, with the steel fibers added to the concrete to improve the tensile resistance. First, this research aims to investigate the material properties of SFRC in various concrete compressive strengths, shapes of steel fiber and volume fractions of steel fiber. In order to evaluate the shear capacity, several material properties, such as tension softening curves and fracture energy were investigated in the material tests. Second, four-point bending tests of RSF beams were conducted in order to investigate the shear capacity and diagonal crack pattern. Eight RSF beams with various concrete compressive strengths, volume fractions of steel fiber and stirrup ratios were fabricated and tested. The results revealed that the concrete compressive strength and steel fiber significantly affect the shear capacity of RSF beams. Finally, the shear equation for the RSF beams failing in a diagonal tension failure mode has been proposed by focusing on the residual tensile stress perpendicular to the critical diagonal crack at the failure condition.
This research aimed to estimate the shear capacity of reinforced concrete short beams with steel fiber (RSF short beams) using DIC (digital image correlation). Four-point bending tests of RSF short beams with shear span ratio (a/d) of 1.0, 1.5, and 2.0 were conducted. 0.5% or 1.0% volume fraction of steel fiber was used. The distribution of minimum principal strain (Ɛ2) was obtained from DIC then the width of compressive strut was evaluated. The effects of volume fraction of steel fiber and shear span ratio were investigated. Finally, the shear capacity of RSF short beams was estimated with the help of DIC.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.