The photochemistry of an aqueous suspension of the iron oxyhydroxide, ferrihydrite, in the presence of arsenite has been investigated using attenuated total reflection Fourier transform infrared spectroscopy (ATR-FTIR), X-ray absorption near edge structure (XANES), and solution phase analysis. Both ATR-FTIR and XANES show that the exposure of ferrihydrite to arsenite in the dark leads to no change in the As oxidation state, but the exposure of this arsenite-bearing surface, which is in contact with pH 5 water, to light leads to the conversion of the majority of the adsorbed arsenite to the As(V) bearing species, arsenate. Analysis of the solution phase shows that ferrous iron is released into solution during the oxidation of arsenite. The photochemical reaction, however, shows the characteristics of a self-terminating reaction in that there is a significant suppression of this redox chemistry before 10% of the total iron making up the ferrihydrite partitions into solution as ferrous iron. The self-terminating behavior exhibited by this photochemical arsenite/ferrihydrite system is likely due to the passivation of the ferrihydrite surface by the strongly bound arsenate product.
Differential pair distribution function (d-PDF) analysis of high energy powder X-ray diffraction data was carried out on 2-line ferrihydrite nanoparticles with arsenate oxyanions adsorbed on the surface to investigate the binding mechanism. In this analysis, a PDF of ferrihydrite is subtracted from a PDF of ferrihydrite with arsenate sorbed on the surface, leaving only correlations from within the surface layer and between the surface and the particle. As-O and As-Fe correlations were observed at 1.68 and 3.29 A, respectively, in good agreement with previously published EXAFS data, confirming a bidentate binuclear binding mechanism. Further peaks are observed in the d-PDF which are not present in EXAFS, corresponding to correlations between As and O in the particle and As-2nd Fe.
The photochemistry of an aqueous suspension of goethite in the presence of arsenite (As(III)) was investigated with X-ray absorption near edge structure (XANES) spectroscopy and solution-phase analysis. Irradiation of the arsenite/goethite under conditions where dissolved oxygen was present in solution led to the presence of arsenate (As(V)) product adsorbed on goethite and in solution. Under anoxic conditions (absence of dissolved oxygen), As(III) oxidation occurred, but the As(V) product was largely restricted to the goethite surface. In this circumstance, however, there was a significant amount of ferrous iron release, in stark contrast to the As(III) oxidation reaction in the presence of dissolved oxygen. Results suggested that in the oxic environment ferrous iron, which formed via the photoinduced oxidation of As(III) in the presence of goethite, was heterogeneously oxidized to ferric iron by dissolved oxygen. It is likely that aqueous reactive oxygen species formed during this process led to the further oxidation of As(III) in solution. Results from the current study for As(III)/goethite also were compared to results from a prior study of the photochemistry of As(III) in the presence of another iron oxyhydroxide, ferrihydrite. The comparison showed that at pH 5 and 2 h of light exposure the instantaneous rate of aqueous-phase As(V) formation in the presence of goethite (12.4 × 10(-5) M s(-1) m(-2)) was significantly faster than in the presence of ferrihydrite (6.73 × 10(-6) M s(-1) m(-2)). It was proposed that this increased rate of ferrous iron oxidation in the presence of goethite and dissolved oxygen was the primary reason for the higher As(III) oxidation rate when compared to the As(III)/ferrihydrite system. The surface area-normalized pseudo-first-order rate constant, for example, associated with the heterogeneous oxidation of Fe(II) by dissolved oxygen in the presence of goethite (1.9 × 10(-6) L s(-1) m(-2)) was experimentally determined to be considerably higher than if ferrihydrite was present (2.0 × 10(-7) L s(-1) m(-2)) at a solution pH of 5.
The photodissolution of the iron oxyhydroxide, ferrihydrite, in the presence of oxalic acid was investigated with vibrational spectroscopy, density functional theory (DFT) calculations, and batch geochemical techniques that determined the composition of the solution phase during the dissolution process. Specifically, in situ attenuated total reflection Fourier transform infrared spectroscopy (ATR- FTIR) was used to determine the structure of the adsorbed layer during the dissolution process at a solution pH of 4.5. DFT based computations were used to interpret the vibrational data associated with the surface monolayer in order to help determine the structure of the adsorbed complexes. Results showed that at pH 4.5, oxalate adsorbed on ferrihydrite adopted a mononuclear bidentate (MNBD) binding geometry. Photodissolution at pH 4.5 exhibited an induction period where the rate of Fe(II) release was limited by a low concentration of adsorbed oxalate due to the site-blocking of carbonate that was intrinsic to the surface of the ferrihydrite starting material. Oxalate displaced this initial carbonate over time, and the dissolution rate showed a corresponding increase. Irradiation of oxalate/ferrihydrite at pH 4.5 also ultimately led to the appearance of carbonate reaction product (distinct from carbonate intrinsic to the starting material) on the surface.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.