Purpose: A single nucleotide polymorphism (SNP) in the promoter region of MDM2 gene, SNP309, has recently been shown to be associated with accelerated tumor formation in both hereditary and sporadic cancers in humans. However, the association of SNP309 with hepatocellular carcinoma is unknown. We evaluated the association of SNP309 with the risk of hepatocellular carcinoma development among Japanese patients with chronic hepatitis C virus infection. Experimental Design: We genotyped the SNP309 at the MDM2 promoter in 435 Japanese patients with chronic hepatitis C virus infection, including 187 patients with hepatocellular carcinoma and 48 healthy subjects, using a fluorogenic PCR. Presence of SNP was also confirmed by direct sequencing of the MDM2 promoter region. Results: The proportion of G/G genotype of the SNP309 in patients with hepatocellular carcinoma (33%) was significantly higher than that in patients without hepatocellular carcinoma (23%), with an odds ratio (95% confidence interval) of 2.28 (1.30-3.98). A multivariate analysis revealed that MDM2 SNP309 (G/G versus T/T), age >60 years, male gender, presence of cirrhosis, serum a-fetoprotein >20 Ag/L, and serum albumin <3.2 g/dL were independently associated with the hepatocellular carcinoma development at odds ratio of 2.27, 2.46, 3.08, 4.15, 4.87, and 6.33, respectively. Conclusions: The MDM2 promoter SNP309 is associated with the presence of hepatocellular carcinoma in Japanese patients with chronic hepatitis C.
Infection by hepatitis C virus (HCV) usually results into chronic hepatitis that can ultimately lead to cirrhosis and hepatocellular carcinoma. Type 1 interferons (IFN-␣/) constitute the primary cellular defense against viral infection including HCV. IFN binding to their receptors activates associated Jak1 and Tyk2 kinases, which ultimately leads to phosphorylation and assembly of a signal transducer and activator of transcription protein (STAT)1-STAT2-interferon regulatory factor (IRF)9 trimetric complex called interferonstimulated gene factor 3 that translocates into the nucleus and binds to the interferonstimulated response elements (ISRE), leading to transcriptional induction of several antiviral genes, including double-stranded RNA-activated protein kinase (PKR), 2 ,5 -oligoadenylate synthetase (OAS), and myxovirus resistance protein A (MxA). Understanding the mechanisms of how the virus evades this cellular innate defense and establishes a chronic infection is the key for the development of better therapeutics against HCV infection. Here, we demonstrate that p53 could have a crucial role in the cellular innate defense against HCV. We observed significantly higher levels of HCV RNA replication and viral protein expression in the Huh7 cells when their p53 expressions were knocked down. Moreover, IFN treatment was less effective in inhibiting the HCV RNA replication in the p53-knocked-down (p53kd) Huh7 cells. In fact, the activation of the ISRE and the induction of ISGs were significantly attenuated in the p53kd Huh7 cells and p53 was found to directly interact with IRF9. Conclusion: These observations underscore the potential contributions of the tumor suppressor p53 in cellular antiviral immunity against HCV with possible therapeutic implications.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.