Aim:To assess nurse-reported organizational readiness for implementing change in acute care hospitals.
Background Understanding how comorbidity measures contribute to patient mortality is essential both to describe patient health status and to adjust for risks and potential confounding. The Charlson and Elixhauser comorbidity indices are well-established for risk adjustment and mortality prediction. Still, a different set of comorbidity weights might improve the prediction of in-hospital mortality. The present study, therefore, aimed to derive a set of new Swiss Elixhauser comorbidity weightings, to validate and compare them against those of the Charlson and Elixhauser-based van Walraven weights in an adult in-patient population-based cohort of general hospitals. Methods Retrospective analysis was conducted with routine data of 102 Swiss general hospitals (2012–2017) for 6.09 million inpatient cases. To derive the Swiss weightings for the Elixhauser comorbidity index, we randomly halved the inpatient data and validated the results of part 1 alongside the established weighting systems in part 2, to predict in-hospital mortality. Charlson and van Walraven weights were applied to Charlson and Elixhauser comorbidity indices. Derivation and validation of weightings were conducted with generalized additive models adjusted for age, gender and hospital types. Results Overall, the Elixhauser indices, c-statistic with Swiss weights (0.867, 95% CI, 0.865–0.868) and van Walraven’s weights (0.863, 95% CI, 0.862–0.864) had substantial advantage over Charlson’s weights (0.850, 95% CI, 0.849–0.851) and in the derivation and validation groups. The net reclassification improvement of new Swiss weights improved the predictive performance by 1.6% on the Elixhauser-van Walraven and 4.9% on the Charlson weights. Conclusions All weightings confirmed previous results with the national dataset. The new Swiss weightings model improved slightly the prediction of in-hospital mortality in Swiss hospitals. The newly derive weights support patient population-based analysis of in-hospital mortality and seek country or specific cohort-based weightings.
Nursing home quality indicators are often used to publicly report the quality of nursing home care. In Switzerland, six national nursing home quality indicators covering four clinical domains (polypharmacy, pain, use of physical restraints and weight loss) were recently developed. To allow for meaningful comparisons, these indicators must reliably show differences in quality of care levels between nursing homes. This study’s objectives were to assess nursing home quality indicators’ between-provider variability and reliability using intraclass correlations and rankability. This approach has not yet been used in long-term care contexts but presents methodological advantages. This cross-sectional multicenter study uses data of 11,412 residents from a convenience sample of 152 Swiss nursing homes. After calculating intraclass correlation 1 (ICC1) and rankability, we describe between-provider variability for each quality indicator using empirical Bayes estimate-based caterpillar plots. To assess reliability, we used intraclass correlation 2 (ICC2). Overall, ICC1 values were high, ranging from 0.068 (95% confidence interval (CI) 0.047–0.086) for polypharmacy to 0.396 (95% CI 0.297–0.474) for physical restraints, with quality indicator caterpillar plots showing sufficient between-provider variability. However, testing for rankability produced mixed results, with low figures for two indicators (0.144 for polypharmacy; 0.471 for self-reported pain) and moderate to high figures for the four others (from 0.692 for observed pain to 0.976 for physical restraints). High ICC2 figures, ranging from 0.896 (95% CI 0.852–0.917) (self-reported pain) to 0.990 (95% CI 0.985–0.993) (physical restraints), indicated good reliability for all six quality indicators. Intraclass correlations and rankability can be used to assess nursing home quality indicators’ between-provider variability and reliability. The six selected quality indicators reliably distinguish care differences between nursing homes and can be recommended for use, although the variability of two—polypharmacy and self-reported pain—is substantially chance-driven, limiting their utility.
Background When chronic conditions are associated with outcomes such as mortality, comorbidity measures are essential both to describe patient health status and to adjust for potential confounding. The Charlson and Elixhauser comorbidity indices are well-established for risk adjustment and mortality prediction. Still, as optimal comorbidity weightings remain undetermined. The present study aimed to derive a set of new population-based Elixhauser comorbidity weightings, then to validate and compare their mortality predictivity against those of the Charlson and Elixhauser-based van Walraven weightings estimates in a population-based cohort.Methods Retrospective analysis was conducted with routine Swiss general hospital (102 hospitals) data (2012–2017) for 6.09 million inpatient cases. To derive the population-based weightings for the Elixhauser comorbidity index, we randomly halved the inpatient data and validated the results for Part 1 alongside the established weighting systems used for Part 2. Charlson and van Walraven weightings were applied to Charlson and Elixhauser comorbidity indices. Generalized additive models were weighted and adjusted for age, gender and hospital types.Results Overall, the population-based weights’ c-statistic (0.867, 95% CI: 0.865–0.868) was consistently higher than Elixhauser-van Walraven’s (0.863, 95% CI: 0.862–0.864) and Charlson’s (0.850, 95% CI: 0.849–0.851) in the derivation and validation groups and net reclassification improvement of new weights offers improved predictive performance of 0.4% on the Elixhauser-van Walraven and 6.1% on the Charlson weightings.Conclusions All weightings were validated with the national dataset and the new population-based weightings model improved the prediction of in-hospital mortality. The newly derive weights support patient population-based analysis of health outcomes.
Background Variations in hospitals’ care demand relies not only on the patient volume but also on the disease severity. Understanding both daily severity and patient volume in hospitals could help to identify hospital pressure zones to improve hospital-capacity planning and policy-making. Objective This longitudinal study explored daily care demand dynamics in Swiss general hospitals for 3 measures: (1) capacity utilization, (2) patient turnover, and (3) patient clinical complexity level. Methods A retrospective population-based analysis was conducted with 1 year of routine data of 1.2 million inpatients from 102 Swiss general hospitals. Capacity utilization was measured as a percentage of the daily maximum number of inpatients. Patient turnover was measured as a percentage of the daily sum of admissions and discharges per hospital. Patient clinical complexity level was measured as the average daily patient disease severity per hospital from the clinical complexity algorithm. Results There was a pronounced variability of care demand in Swiss general hospitals. Among hospitals, the average daily capacity utilization ranged from 57.8% (95% CI 57.3-58.4) to 87.7% (95% CI 87.3-88.0), patient turnover ranged from 22.5% (95% CI 22.1-22.8) to 34.5% (95% CI 34.3-34.7), and the mean patient clinical complexity level ranged from 1.26 (95% CI 1.25-1.27) to 2.06 (95% CI 2.05-2.07). Moreover, both within and between hospitals, all 3 measures varied distinctly between days of the year, between days of the week, between weekdays and weekends, and between seasons. Conclusions While admissions and discharges drive capacity utilization and patient turnover variation, disease severity of each patient drives patient clinical complexity level. Monitoring—and, if possible, anticipating—daily care demand fluctuations is key to managing hospital pressure zones. This study provides a pathway for identifying patients’ daily exposure to strained hospital systems for a time-varying causal model.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.