Rapid advances in DNA synthesis techniques have made it possible to engineer viruses, biochemical pathways and assemble bacterial genomes. Here, we report the synthesis of a functional 272,871 bp designer eukaryotic chromosome, synIII, which is based on the 316,617 bp native Saccharomyces cerevisiae chromosome III. Changes to synIII include TAG/TAA stop-codon replacements, deletion of subtelomeric regions, introns, tRNAs, transposons and silent mating loci as well as insertion of loxPsym sites to enable genome scrambling. SynIII is functional in S. cerevisiae. Scrambling of the chromosome in a heterozygous diploid reveals a large increase in “a mater” derivatives resulting from loss of the MATα allele on synIII. The total synthesis of synIII represents the first complete design and synthesis of a eukaryotic chromosome, establishing S. cerevisiae as the basis for designer eukaryotic genome biology.
A recombinant Saccharomyces cerevisiae strain transformed with xylose reductase (XR) and xylitol dehydrogenase (XDH) genes from Pichia stipitis (PsXR and PsXDH, respectively) has the ability to convert xylose to ethanol together with the unfavourable excretion of xylitol, which may be due to intercellular redox imbalance caused by the different coenzyme specificity between NADPH-preferring XR and NAD + -dependent XDH. In this study, we focused on the effect(s) of mutated NADH-preferring PsXR in fermentation. The R276H and K270R/N272D mutants were improved 52-and 146-fold, respectively, in the ratio of NADH/NADPH in catalytic efficiency [(k cat /K m with NADH)/(k cat /K m with NADPH)] compared with the wild-type (WT), which was due to decrease of k cat with NADPH in the R276H mutant and increase of K m with NADPH in the K270R/N272D mutant. Furthermore, R276H mutation led to significant thermostabilization in PsXR. The most positive effect on xylose fermentation to ethanol was found by using the Y-R276H strain, expressing PsXR R276H mutant and PsXDH WT: 20 % increase of ethanol production and 52 % decrease of xylitol excretion, compared with the Y-WT strain expressing PsXR WT and PsXDH WT. Measurement of intracellular coenzyme concentrations suggested that maintenance of the of NADPH/NADP + and NADH/NAD + ratios is important for efficient ethanol fermentation from xylose by recombinant S. cerevisiae.
Key messageA simple and versatile ternary vector system that utilizes improved accessory plasmids for rapid maize transformation is described. This system facilitates high-throughput vector construction and plant transformation.AbstractThe super binary plasmid pSB1 is a mainstay of maize transformation. However, the large size of the base vector makes it challenging to clone, the process of co-integration is cumbersome and inefficient, and some Agrobacterium strains are known to give rise to spontaneous mutants resistant to tetracycline. These limitations present substantial barriers to high throughput vector construction. Here we describe a smaller, simpler and versatile ternary vector system for maize transformation that utilizes improved accessory plasmids requiring no co-integration step. In addition, the newly described accessory plasmids have restored virulence genes found to be defective in pSB1, as well as added virulence genes. Testing of different configurations of the accessory plasmids in combination with T-DNA binary vector as ternary vectors nearly doubles both the raw transformation frequency and the number of transformation events of usable quality in difficult-to-transform maize inbreds. The newly described ternary vectors enabled the development of a rapid maize transformation method for elite inbreds. This vector system facilitated screening different origins of replication on the accessory plasmid and T-DNA vector, and four combinations were identified that have high (86–103%) raw transformation frequency in an elite maize inbred.Electronic supplementary materialThe online version of this article (10.1007/s11103-018-0732-y) contains supplementary material, which is available to authorized users.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.