Background Alterations in gastrointestinal (GI) function and the gut‐brain axis are associated with progression and pathology of Alzheimer's Disease (AD). Studies in AD animal models show that changes in the gut microbiome and inflammatory markers can contribute to AD development in the central nervous system (CNS). Amyloid‐beta (Aβ) accumulation is a major AD pathology causing synaptic dysfunction and neuronal death. Current knowledge of the pathophysiology of AD in enteric neurons is limited, and whether Aβ accumulation directly disrupts enteric neuron function is unknown. Methods In 6‐month‐old 5xFAD (transgenic AD) and wildtype (WT) male and female mice, GI function was assessed by colonic transit in vivo; propulsive motility and GI smooth muscle contractions ex vivo; electrochemical detection of enteric nitric oxide release in vitro, and changes in myenteric neuromuscular transmission using smooth muscle intracellular recordings. Expression of Aβ in the brain and colonic myenteric plexus in these mice was determined by immunohistochemistry staining and ELISA assay. Key Results At 6 months, 5xFAD mice did not show significant changes in GI motility or synaptic neurotransmission in the small intestine or colon. 5xFAD mice, but not WT mice, showed abundant Aβ accumulation in the brain. Aβ accumulation was undetectable in the colonic myenteric plexus of 5xFAD mice. Conclusions 5xFAD AD mice are not a robust model to study amyloidosis in the gut as these mice do not mimic myenteric neuronal dysfunction in AD patients with GI dysmotility. An AD animal model with enteric amyloidosis is required for further study.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.