Many real-world applications that focus on addressing needs of a human, require information about the activities being performed by the human in real-time. While advances in pervasive computing have lead to the development of wireless and non-intrusive sensors that can capture the necessary activity information, current activity recognition approaches have so far experimented on either a scripted or pre-segmented sequence of sensor events related to activities. In this paper we propose and evaluate a sliding window based approach to perform activity recognition in an on line or streaming fashion; recognizing activities as and when new sensor events are recorded. To account for the fact that different activities can be best characterized by different window lengths of sensor events, we incorporate the time decay and mutual information based weighting of sensor events within a window. Additional contextual information in the form of the previous activity and the activity of the previous window is also appended to the feature describing a sensor window. The experiments conducted to evaluate these techniques on real-world smart home datasets suggests that combining mutual information based weighting of sensor events and adding past contextual information into the feature leads to best performance for streaming activity recognition.
While the potential benefits of smart home technology are widely recognized, a lightweight design is needed for the benefits to be realized at a large scale. We introduce the CASAS “smart home in a box”, a lightweight smart home design that is easy to install and provides smart home capabilities out of the box with no customization or training. We discuss types of data analysis that have been performed by the CASAS group and can be pursued in the future by using this approach to designing and implementing smart home technologies.
Many intelligent systems that focus on the needs of a human require information about the activities being performed by the human. At the core of this capability is activity recognition, which is a challenging and well-researched problem. Activity recognition algorithms require substantial amounts of labeled training data yet need to perform well under very diverse circumstances. As a result, researchers have been designing methods to identify and utilize subtle connections between activity recognition datasets, or to perform transfer-based activity recognition. In this paper we survey the literature to highlight recent advances in transfer learning for activity recognition. We characterize existing approaches to transfer-based activity recognition by sensor modality, by differences between source and target environments, by data availability, and by type of information that is transferred. Finally, we present some grand challenges for the community to consider as this field is further developed.
Abstract-Due to an increased popularity of assistive healthcare technologies activity recognition has become one of the most widely studied problems in technology-driven assistive healthcare domain. Current approaches for smart-phone based activity recognition focus only on simple activities such as locomotion. In this paper, in addition to recognizing simple activities, we investigate the ability to recognize complex activities, such as cooking, cleaning, etc. through a smart phone. Features extracted from the raw inertial sensor data of the smart phone corresponding to the user's activities, are used to train and test supervised machine learning algorithms. The results from the experiments conducted on ten participants indicate that, in isolation, while simple activities can be easily recognized, the performance of the prediction models on complex activities is poor. However, the prediction model is robust enough to recognize simple activities even in the presence of complex activities.
Activity recognition has received increasing attention from the machine learning community. Of particular interest is the ability to recognize activities in real time from streaming data, but this presents a number of challenges not faced by traditional offline approaches. Among these challenges is handling the large amount of data that does not belong to a predefined class. In this paper, we describe a method by which activity discovery can be used to identify behavioral patterns in observational data. Discovering patterns in the data that does not belong to a predefined class aids in understanding this data and segmenting it into learnable classes. We demonstrate that activity discovery not only sheds light on behavioral patterns, but it can also boost the performance of recognition algorithms. We introduce this partnership between activity discovery and online activity recognition in the context of the CASAS smart home project and validate our approach using CASAS datasets.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.