DNA methylation at CpG residues is closely associated with a number of biological processes during vertebrate development. Unlike the vertebrates, however, several invertebrate species, including the Drosophila, do not have apparent DNA methylation in their genomes. Nor have there been reports on a DNA (5-cytosine) methyltransferase (CpG MTase) found in these invertebrates. We now present evidence for two CpG MTase-like proteins expressed in Drosophila cells. One of these, DmMTR1, is a protein containing peptide epitopes immunologically related to the conserved motifs I and IV in the catalytic domain of the mammalian dnmt1. DmMTR1 has an apparent molecular mass of 220 kDa and, similar to mammalian dnmt1, it also interacts in vivo with the proliferating cell nuclear antigen. During interphase of the syncytial Drosophila embryos, the DmMTR1 molecules are located outside the nuclei, as is dnmt1 in the mouse blastocyst. However, DmMTR1 appears to be rapidly transported into, and then out of the nuclei again, as the embryos undergo mitotic waves. Immunofluorescent data indicate that DmMTR1 molecules ''paint'' the whole set of condensed Drosophila chromosomes throughout the mitotic phase, suggesting they may play an essential function in the cell-cycle regulated condensation of the Drosophila chromosomes. Through search in the genomic database, we also have identified a Drosophila polypeptide, DmMT2, that exhibits high sequence homology to the mammalian dnmt2 and the yeast CpG MTase homolog pmt1. The expression of DmMT2 appears to be developmentally regulated. We discuss the evolutionary and functional implications of the discovery of these two Drosophila proteins related to mammalian CpG MTases.epitope detection ͉ early embryo ͉ cell cycle ͉ chromatin structure ͉ database
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.