During our studies of Se-Se interactions in selenides, it was observed that halogen atoms X of C-X bonds were engaged in both a "head-on" and a "side-on" fashion to Se atoms. To understand such interactions, we have analyzed the crystallographic environment around halogen centers and find that, in general, "electrophiles" tend to approach halogens of C-X (X = Cl, Br, I) at an angle of ~100°and nucleophiles at ~165°and that C-X-X-C type interactions fall into two groups, one forming an "electrophile-nucleophile pairing" interaction and the other forming no such pairing. These interactions are interpreted in terms of HOMO and LUMO frontier orbitals centered on the halogens and the approaching atoms. Such "electrophile-nucleophile pairing" interactions are quite general for several systems like sulfides and selenides and no doubt are important in the interaction of small molecules containing halogens since halogen atoms often are in a situation to make short contact with a variety of other atoms, owing to their exposed positions in many molecules.
When cultured in broth, fresh clinical isolates of the gram-negative periodontal pathogen Actinobacillus actinomycetemcomitans form tenaciously adherent biofilm colonies on surfaces such as plastic and glass. These biofilm colonies release adherent cells into the medium, and the released cells can attach to the surface of the culture vessel and form new colonies, enabling the biofilm to spread. We mutagenized A. actinomycetemcomitans clinical strain CU1000 with transposon IS903kan and isolated a transposon insertion mutant that formed biofilm colonies which were tightly adherent to surfaces but which lacked the ability to release cells into the medium and disperse. The transposon insertion in the mutant strain mapped to a gene, designated dspB, that was predicted to encode a secreted protein homologous to the catalytic domain of the family 20 glycosyl hydrolases. A plasmid carrying a wild-type dspB gene restored the ability of biofilm colonies of the mutant strain to disperse. We expressed A. actinomycetemcomitans DspB protein engineered to contain a hexahistidine metal-binding site at its C terminus in Escherichia coli and purified the protein by using Ni affinity chromatography. Substrate specificity studies performed with monosaccharides labeled with 4-nitrophenyl groups showed that DspB hydrolyzed the 134 glycosidic bond of -substituted N-acetylglucosamine, which is consistent with the known functions of other family 20 glycosyl hydrolases. When added to culture medium, purified DspB protein, but not heat-inactivated DspB, restored the ability of the mutant strain to release cells and disperse. DspB protein also caused the detachment of cells from preformed biofilm colonies of strain CU1000 grown attached to plastic and the disaggregation of highly autoaggregated clumps of CU1000 cells in solution. We concluded that dspB encodes a soluble -N-acetylglucosaminidase that causes detachment and dispersion of A. actinomycetemcomitans biofilm cells.
Biofilms are composed of bacterial cells embedded in an extracellular polysaccharide matrix. A major component of the Escherichia coli biofilm matrix is PGA, a linear polymer of N-acetyl-D-glucosamine residues in (1,6) linkage. PGA mediates intercellular adhesion and attachment of cells to abiotic surfaces. In this report, we present genetic and biochemical evidence that PGA is also a major matrix component of biofilms produced by the human periodontopathogen Actinobacillus actinomycetemcomitans and the porcine respiratory pathogen Actinobacillus pleuropneumoniae. We also show that PGA is a substrate for dispersin B, a biofilm-releasing glycosyl hydrolase produced by A. actinomycetemcomitans, and that an orthologous dispersin B enzyme is produced by A. pleuropneumoniae. We further show that A. actinomycetemcomitans PGA cross-reacts with antiserum raised against polysaccharide intercellular adhesin, a staphylococcal biofilm matrix polysaccharide that is genetically and structurally related to PGA. Our findings confirm that PGA functions as a biofilm matrix polysaccharide in phylogenetically diverse bacterial species and suggest that PGA may play a role in intercellular adhesion and cellular detachment and dispersal in A. actinomycetemcomitans and A. pleuropneumoniae biofilms.
The gram-positive bacterium Staphylococcus epidermidis is the most common cause of infections associated with catheters and other indwelling medical devices. S. epidermidis produces an extracellular slime that enables it to form adherent biofilms on plastic surfaces. We found that a biofilm-releasing enzyme produced by the gram-negative periodontal pathogen Actinobacillus actinomycetemcomitans rapidly and efficiently removed S. epidermidis biofilms from plastic surfaces. The enzyme worked by releasing extracellular slime from S. epidermidis cells. Precoating surfaces with the enzyme prevented S. epidermidis biofilm formation. Our findings demonstrate that biofilm-releasing enzymes can exhibit broad-spectrum activity and that these enzymes may be useful as antibiofilm agents.
Salivary a-amylase, a major component of human saliva, plays a role in the initial digestion of starch and may be involved in the colonization of bacteria involved in early dental plaque formation. The three-dimensional atomic structure of salivary amylase has been determined to understand the structure-function relationships of this enzyme. This structure was refined to an R value of 18.4% with 496 amino-acid residues, one calcium ion, one chloride ion and 170 water molecules. Salivary amylase folds into a multidomain structure consisting of three domains, A, B and C. Domain A has a (/3/a)8-barrel structure, domain B has no definite topology and domain C has a Greek-key barrel structure. The Ca 2+ ion is bound to Asnl00, Arg158, Asp167, His201 and three water molecules. The C1-ion is bound to Arg195, Asn298 and Arg337 and one water molecule. The highly mobile glycine-rich loop 304-310 may act as a gateway for substrate binding and be involved in a 'trap-release' mechanism in the hydrolysis of substrates. Strategic placement of calcium and chloride ions, as well as histidine and tryptophan residues may play a role in differentiating between the glycone and aglycone ends of the polysaccharide substrates. Salivary amylase also possesses a suitable site for binding to enamel surfaces and provides potential sites for the binding of bacterial adhesins.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.