Objective. The aim of the study was to screen eight species of berries for their ability to prevent obesity and metabolic abnormalities associated with type 2 diabetes. Methods. C57BL/6J mice were assigned the following diets for 13 weeks: low-fat diet, high-fat diet or high-fat diet supplemented (20%) with lingonberry, blackcurrant, bilberry, raspberry, açai, crowberry, prune or blackberry. Results. The groups receiving a high-fat diet supplemented with lingonberries, blackcurrants, raspberries or bilberries gained less weight and had lower fasting insulin levels than the control group receiving high-fat diet without berries. Lingonberries, and also blackcurrants and bilberries, significantly decreased body fat content, hepatic lipid accumulation, and plasma levels of the inflammatory marker PAI-1, as well as mediated positive effects on glucose homeostasis. The group receiving açai displayed increased weight gain and developed large, steatotic livers. Quercetin glycosides were detected in the lingonberry and the blackcurrant diets. Conclusion. Lingonberries were shown to fully or partially prevent the detrimental metabolic effects induced by high-fat diet. Blackcurrants and bilberries had similar properties, but to a lower degree. We propose that the beneficial metabolic effects of lingonberries could be useful in preventing obesity and related disorders.
Introduction. Berries contain high amounts of dietary fibre and flavonoids and have been associated with improved metabolic health. The mechanisms are not clear but the formation of SCFAs, especially propionic and butyric acids, could be important. The potent antioxidant and antimicrobial properties of flavonoids could also be a factor, but little is known about their fate in the gastrointestinal tract. Aim. To compare how blackcurrants, blackberries, raspberries, and Lactobacillus plantarum HEAL19 affect formation of SCFAs, inflammatory status, caecal microbial diversity, and flavonoids. Results and Conclusions. Degradation of the dietary fibre, formation of SCFAs including propionic and butyric acids, the weight of the caecal content and tissue, and the faecal wet and dry weight were all higher in rats fed blackcurrants rather than blackberries or raspberries. However, the microbial diversity of the gut microbiota was higher in rats fed raspberries. The high content of soluble fibre in blackcurrants and the high proportion of mannose-containing polymers might explain these effects. Anthocyanins could only be detected in urine of rats fed blackcurrants, and the excretion was lower with HEAL19. No anthocyanins or anthocyanidins were detected in caecal content or blood. This may indicate uptake in the stomach or small intestine.
Dietary fiber and flavonoids, important components in berries, are suggested to improve metabolic health. This study investigates whether soluble and insoluble fractions isolated from bilberry, black currant, and raspberry affect the formation of short-chain fatty acids (SCFAs), uptake and excretion of flavonoids, and levels of cholesterol differently. Cecal SCFA pools were higher in rats fed the soluble than the insoluble fractions (525 vs 166 μmol, P < 0.001), whereas higher concentrations of butyric acid were found in the distal colon and serum of rats fed the insoluble fractions (5 vs 3 μmol/g and 58 vs 29 μmol/L, respectively, P < 0.001). The soluble bilberry fraction gave lower amounts of liver cholesterol (56 mg) than the other berry fractions (87 ± 5 mg), formed the highest amount of SCFAs (746 vs 266 ± 21 μmol), and contributed the highest intake of anthocyanins. Cyanidin-3-glucoside monoglucuronide was detected in the urine of all groups, whereas anthocyanins were found only in groups fed soluble black currant and raspberry.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.