Several apomictic Brachiaria (Trin.) Griseb. (syn. Urochloa P. Beauv.) species are commercially important tropical forage grasses, but little is known about the interspecific diversity and population structure within this genus. Previously published genus‐level Brachiaria phylogenies were conducted with few genotypes and contradicted well‐established morphological evidence and proven interspecific fertility in the B. brizantha (Hochst. ex A. Rich.) Stapf., B. decumbens Stapf., and B. ruziziensis (R. Germ. & C.M. Evrard) agamic complex. In this study, we characterized the genetic diversity and population structure of 261 genotypes from 14 Brachiaria species and a Panicum maximum Jacq. outgroup using 39 simple sequence repeat primers with 701 polymorphic bands. The genotypes included in the panel included germplasm accessions, commercial cultivars, and sexually reproducing breeding populations. Results of STRUCTURE, neighbor joining, unweighted pair group method with arithmetic mean, and multiple correspondence analyses confirmed the relatedness of the important commercial species B. brizantha, B. decumbens, and B. ruziziensis. Brachiaria decumbens was most closely related to B. ruziziensis, and the diploid sexual and tetraploid apomict B. decumbens accessions formed into two related but distinct groups. The close relationship between B. humidicola (Rendle) Schweick and B. dictyoneura (Figari. and De Not) Stapf. and the unique genetic makeup of the lone sexually reproducing B. humidicola accession were also corroborated by these results. Our findings largely supported morphology‐based taxonomic groupings in Brachiaria and indicated that genus‐level phylogenies are made more robust by the inclusion of many polymorphic markers and multiple genotypes from each species.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.