Current atmospheric CO 2 levels are about 400 lmol mol À1 and are predicted to rise to 650 lmol mol À1 later this century. Although the positive and negative impacts of CO 2 on plants are well documented, little is known about interactions with pests and diseases. If disease severity increases under future environmental conditions, then it becomes imperative to understand the impacts of pathogens on crop production in order to minimize crop losses and maximize food production. Barley yellow dwarf virus (BYDV) adversely affects the yield and quality of economically important crops including wheat, barley and oats. It is transmitted by numerous aphid species and causes a serious disease of cereal crops worldwide. This study examined the effects of ambient (aCO 2 ; 400 lmol mol À1 ) and elevated CO 2 (eCO 2 ; 650 lmol mol À1 ) on noninfected and BYDV-infected wheat. Using a RT-qPCR technique, we measured virus titre from aCO 2 and eCO 2 treatments. BYDV titre increased significantly by 36.8% in leaves of wheat grown under eCO 2 conditions compared to aCO 2 . Plant growth parameters including height, tiller number, leaf area and biomass were generally higher in plants exposed to higher CO 2 levels but increased growth did not explain the increase in BYDV titre in these plants. High virus titre in plants has been shown to have a significant negative effect on plant yield and causes earlier and more pronounced symptom expression increasing the probability of virus spread by insects. The combination of these factors could negatively impact food production in Australia and worldwide under future climate conditions. This is the first quantitative evidence that BYDV titre increases in plants grown under elevated CO 2 levels.
Disease outbreaks caused by turnip yellows virus (TuYV), a member of the genus Polerovirus, family Luteoviridae, regularly occur in canola and pulse crops throughout Australia. To understand the genetic diversity of TuYV for resistance breeding and management, genome sequences of 28 TuYV isolates from different hosts and locations were determined using highthroughput sequencing (HTS). We aimed to identify the parts of the genome that were most variable and clarify the taxonomy of viruses related to TuYV. Poleroviruses contain seven open reading frames (ORFs): ORF 0-2, 3a, and 3-5. Phylogenetic analysis based on the genome sequences, including isolates of TuYV and brassica yellows virus (BrYV) from the GenBank database, showed that most genetic variation among isolates occurred in ORF 5, followed by ORF 0 and ORF 3a. Phylogenetic analysis of ORF 5 revealed three TuYV groups; P5 group 1 and group 3 shared 45-49% amino acid sequence identity, Handling Editor: Jesús Navas-Castillo.
PCR amplicon next generation sequencing (NGS) analysis offers a broadly applicable and targeted approach to detect populations of both high- or low-frequency virus variants in one or more plant samples. In this study, amplicon NGS was used to explore the diversity of the tripartite genome virus, Prunus necrotic ringspot virus (PNRSV) from 53 PNRSV-infected trees using amplicons from conserved gene regions of each of PNRSV RNA1, RNA2 and RNA3. Sequencing of the amplicons from 53 PNRSV-infected trees revealed differing levels of polymorphism across the three different components of the PNRSV genome with a total number of 5040, 2083 and 5486 sequence variants observed for RNA1, RNA2 and RNA3 respectively. The RNA2 had the lowest diversity of sequences compared to RNA1 and RNA3, reflecting the lack of flexibility tolerated by the replicase gene that is encoded by this RNA component. Distinct PNRSV phylo-groups, consisting of closely related clusters of sequence variants, were observed in each of PNRSV RNA1, RNA2 and RNA3. Most plant samples had a single phylo-group for each RNA component. Haplotype network analysis showed that smaller clusters of PNRSV sequence variants were genetically connected to the largest sequence variant cluster within a phylo-group of each RNA component. Some plant samples had sequence variants occurring in multiple PNRSV phylo-groups in at least one of each RNA and these phylo-groups formed distinct clades that represent PNRSV genetic strains. Variants within the same phylo-group of each Prunus plant sample had ≥97% similarity and phylo-groups within a Prunus plant sample and between samples had less ≤97% similarity. Based on the analysis of diversity, a definition of a PNRSV genetic strain was proposed. The proposed definition was applied to determine the number of PNRSV genetic strains in each of the plant samples and the complexity in defining genetic strains in multipartite genome viruses was explored.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.