Myelin regeneration is a major therapeutic goal in demyelinating diseases, and the failure to remyelinate rapidly has profound consequences for the health of axons and for brain function. However, there is no efficient treatment for stimulating myelin repair, and current therapies are limited to anti-inflammatory agents. Males are less likely to develop multiple sclerosis than females, but often have a more severe disease course and reach disability milestones at an earlier age than females, and these observations have spurred interest in the potential protective effects of androgens. Here, we demonstrate that testosterone treatment efficiently stimulates the formation of new myelin and reverses myelin damage in chronic demyelinated brain lesions, resulting from the long-term administration of cuprizone, which is toxic for oligodendrocytes. In addition to the strong effect of testosterone on myelin repair, the number of activated astrocytes and microglial cells returned to low control levels, indicating a reduction of neuroinflammatory responses. We also identify the neural androgen receptor as a novel therapeutic target for myelin recovery. After the acute demyelination of cerebellar slices in organotypic culture, the remyelinating actions of testosterone could be mimicked by 5α-dihydrotestosterone, a metabolite that is not converted to oestrogens, and blocked by the androgen receptor antagonist flutamide. Testosterone treatment also failed to promote remyelination after chronic cuprizone-induced demyelination in mice with a non-functional androgen receptor. Importantly, testosterone did not stimulate the formation of new myelin sheaths after specific knockout of the androgen receptor in neurons and macroglial cells. Thus, the neural brain androgen receptor is required for the remyelination effect of testosterone, whereas the presence of the receptor in microglia and in peripheral tissues is not sufficient to enhance remyelination. The potent synthetic testosterone analogue 7α-methyl-19-nortestosterone, which has been developed for long-term male contraception and androgen replacement therapy in hypogonadal males and does not stimulate prostate growth, also efficiently promoted myelin repair. These data establish the efficacy of androgens as remyelinating agents and qualify the brain androgen receptor as a promising drug target for remyelination therapy, thus providing the preclinical rationale for a novel therapeutic use of androgens in males with multiple sclerosis.
Enhancing the endogenous capacity of myelin repair is a major therapeutic challenge in demyelinating diseases such as multiple sclerosis. We found that progesterone and the synthetic 19-norprogesterone derivative 16-methylene-17α-acetoxy-19-norpregn-4-ene-3,20-dione (Nestorone) promote the remyelination of axons by oligodendrocytes after lysolecithin-induced demyelination in organotypic cultures of cerebellar slices taken from postnatal rats or mice. The intracellular progesterone receptors (PR) mediate the proremyelinating actions of Nestorone, because they are not observed in slices from PR knockout mice. Notably, Nestorone was less efficient in heterozygous mice, expressing reduced levels of PR, suggesting PR haploinsufficiency in myelin repair. Using mice expressing the enhanced green fluorescent protein (EGFP) under the control of the proteolipid gene promoter, we showed that both progesterone and Nestorone strongly increased the reappearance of cells of the oligodendroglial lineage in the demyelinated slices. In contrast to Nestorone, the pregnane derivative medroxyprogesterone acetate had no effect. The increase in oligodendroglial cells by Nestorone resulted from enhanced NG2(+) and Olig2(+) oligodendrocyte progenitor cell (OPC) recruitment. In cocultures of lysolecithin-demyelinated cerebellar slices from wild-type mice apposed to brain stem slices of proteolipid gene promoter-EGFP mice, Nestorone stimulated the migration of OPC towards demyelinated axons. In this coculture paradigm, Nestorone indeed markedly increased the number of EGFP(+) cells migrating into the demyelinated cerebellar slices. Our results show that Nestorone stimulates the recruitment and maturation of OPC, two steps which are limiting for efficient myelin repair. They may thus open new perspectives for the use of progestins, which selectively target PR, to promote the endogenous regeneration of myelin.
A combination of daily NES+T gels suppressed sperm concentration to 1 million/ml or less in 88.5% of men, with minimal adverse effects, and may be further studied as a male transdermal hormonal contraceptive.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.