Autoantibodies in the form of immune complexes are known to be crucial mediators in initiating inflammation in a variety of autoimmune diseases. This has been well documented in the anti-collagen II antibody-induced arthritis animal model for a long time now. Recently, in the K/B Â N mouse model (the F1 of the TCR-transgenic KRN and the diabetic NOD mice), anti-glucose-6-phosphate isomerase (GPI) autoantibodies have been shown to induce arthritis. Experimental work in the K/B Â N model demonstrated key roles of autoantigenic immune complexes activating the alternative pathway of complement, the subsequent association with C5aR and FccRIII-mediated cell activation and production of the inflammatory cytokines IL-1 and TNF-a, finally leading to joint destruction. The presence of high amounts of inflammatory cytokines and matrix-degrading proteases at sites of inflammation obviously put the cytokineproducing macrophages as the next target for investigation in this model. Here, we show that mice depleted of macrophages by clodronate liposome treatment are completely resistant to K/B Â N serum-induced arthritis. Reconstituting clodronate liposometreated mice with macrophages from naive animals could reverse this resistance. Also, we found that deficiencies in the Wiskott-Aldrich syndrome protein and CD40, which are both implicated in macrophage activation, chemotaxis and phagocytosis, are not essential in serum-induced arthritis. Mast cell degranulation was seen in arthritogenic serum-treated mice even in the absence of macrophages, possibly suggesting that mast cell degranulation/activation acts hierarchically before macrophages in the inflammatory cascade of anti-GPI antibody-induced arthritis.
The dominant cancer treatment modalities such as chemotherapy, radiotherapy, and even targeted kinase inhibitors and mAbs are limited by low efficacy, toxicity, and treatmentresistant tumor subclones. Oncolytic viral therapy offers a novel therapeutic strategy that has the potential to dramatically improve clinical outcomes. Reovirus, a double-stranded benign human RNA virus, is a leading candidate for therapeutic development and currently in phase III trials. Reovirus selectively targets transformed cells with activated Ras signaling pathways; Ras genes are some of the most frequently mutated oncogenes in human cancer and it is estimated that at least 30% of all human tumors exhibit aberrant Ras signaling. By targeting Rasactivated cells, reovirus can directly lyse cancer cells, disrupt tumor immunosuppressive mechanisms, reestablish multicellular immune surveillance, and generate robust antitumor responses. Reovirus therapy is currently being tested in combination with radiotherapy, chemotherapy, immunotherapy, and surgery. In this review, we discuss the current successes of these combinatorial therapeutic strategies and emphasize the importance of prioritizing combination oncolytic viral therapy as reovirus-based treatments progress in clinical development.
IntroductionMatrix metalloproteinases (MMPs) are important in tissue remodelling. Here we investigate the role of collagenase-3 (MMP-13) in antibody-induced arthritis.MethodsFor this study we employed the K/BxN serum-induced arthritis model. Arthritis was induced in C57BL/6 wild type (WT) and MMP-13-deficient (MMP-13–/–) mice by intraperitoneal injection of 200 μl of K/BxN serum. Arthritis was assessed by measuring the ankle swelling. During the course of the experiments, mice were sacrificed every second day for histological examination of the ankle joints. Ankle sections were evaluated histologically for infiltration of inflammatory cells, pannus tissue formation and bone/cartilage destruction. Semi-quantitative PCR was used to determine MMP-13 expression levels in ankle joints of untreated and K/BxN serum-injected mice.ResultsThis study shows that MMP-13 is a regulator of inflammation. We observed increased expression of MMP-13 in ankle joints of WT mice during K/BxN serum-induced arthritis and both K/BxN serum-treated WT and MMP-13–/– mice developed progressive arthritis with a similar onset. However, MMP-13–/– mice showed significantly reduced disease over the whole arthritic period. Ankle joints of WT mice showed severe joint destruction with extensive inflammation and erosion of cartilage and bone. In contrast, MMP-13–/– mice displayed significantly decreased severity of arthritis (50% to 60%) as analyzed by clinical and histological scoring methods.ConclusionsMMP-13 deficiency acts to suppress the local inflammatory responses. Therefore, MMP-13 has a role in the pathogenesis of arthritis, suggesting MMP-13 is a potential therapeutic target.
The therapeutic efficacy of some anti-tumor monoclonal antibodies (mAbs) depends on the capacity of the mAb to recognize the tumor-associated antigen and induce cytotoxicity via a network of immune effector cells. This process of antibody-dependent cell-mediated cytotoxicity (ADCC) against tumor cells is triggered by the interaction of the fragment crystallizable (Fc) portion of the mAb with the Fc receptors on effector cells like natural killer cells, macrophages, γδ T cells, and dendritic cells. By augmenting ADCC, the antitumor activity of mAbs can be significantly increased. Currently, identifying and developing therapeutic agents that enhance ADCC is a growing area of research. Combining existing tumor-targeting mAbs and ADCC-promoting agents that stimulate effector cells will translate to greater clinical responses. In this review, we discuss strategies for enhancing ADCC and emphasize the potential of combination treatments that include US Food and Drug Administration-approved mAbs and immunostimulatory therapeutics.
TNF-related activation-induced cytokine (TRANCE), also known as receptor activator of NF-κB ligand (RANKL), is the key molecule responsible for the bone loss observed in osteoporosis. Passive administration of osteoprotegerin, the soluble decoy receptor of TRANCE/RANKL, is efficient in blocking disease progression, but may not find widespread clinical use due to patient compliance problems and the expected high costs. In this study, we describe an efficient, safe, and potentially cost-effective active immunization strategy against TRANCE/RANKL. We show in mice that immunization with TRANCE/RANKL covalently linked to virus-like particles can overcome the natural tolerance of the immune system toward self proteins and produce high levels of specific Abs without the addition of any adjuvant. Serum Abs of immunized mice neutralized TRANCE/RANKL activity in vitro and were highly active in preventing bone loss in a mouse model of osteoporosis. Active immunization against TRANCE/RANKL was essentially reversible and did not produce any measurable immunosuppressive side effects, underscoring its potential as a new therapeutic approach to the treatment of human bone-degenerative disorders.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.