In this paper, design and performance analysis of bacterial foraging optimization algorithm (BFOA)-optimized fuzzy PI/PID (FPI/FPID) controller for automatic generation control of multi-area interconnected traditional/restructured electrical power systems is presented. Firstly a traditional two-area non-reheat thermal system is considered, and gains of the fuzzy controller are tuned employing BFOA using integral of squared error objective function. The supremacy of this controller is demonstrated by juxtaposing the results with particle swarm optimization (PSO), firefly algorithm (FA), BFOA, hybrid BFOA-PSObased PI and fuzzy PI controllers based upon pattern search (PS) and PSO algorithms for the same power system structure. The approach is then extended to a two-area reheat system, and improved results are found with the purported FPI/FPID controller in comparison with PSO and artificial bee colony optimized PI controller. Further, the approach is implemented on a traditional multi-source multi-area (MSMA) hydrothermal system and its superb performance is observed over genetic algorithm and hybrid FA-PS tuned PI controller. Additionally, to demonstrate the scalability of the designed controller to cope with restructured power system, the study is also protracted to a restructured MSMA
Graphene and its exotic forms have been widely recognized as exceptional materials for gas-sensing applications because of their extraordinary electrical conductivity and large surface area to volume ratios. Herein, chemically reduced graphene oxide (rGO) and zinc oxide-reduced graphene oxide (ZrGO) nanocomposite powders have been successfully synthesized through a simple hydrolysis method followed by annealing in ambient N 2 gas. The reduction of graphene oxide by hydrazine hydrate and the decoration of the graphene surface by ZnO nanoparticles have occurred during the synthesis process. The prepared samples were characterized by various microscopic techniques to explore the surface morphology and uniformity. Spectroscopic techniques were used [a]
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.