A soil moisture retrieval algorithm is proposed that takes advantage of the simultaneous radar and radiometer measurements by the forthcoming NASA Soil Moisture Active Passive (SMAP) mission. The algorithm is designed to downscale SMAP L-band brightness temperature measurements at low resolution (∼ 40 km) to 9-km brightness temperature by using SMAP's L-band synthetic aperture radar (SAR) backscatter measurements at high resolution (1-3 km) in order to estimate soil moisture at 9-km resolution. The SMAP L-band SAR and radiometer instruments are designed to provide coincident observations at constant incidence angle, but at different spatial resolutions, across a wide swath. The algorithm described here takes advantage of the correlation between temporal fluctuations of brightness temperature and backscatter observed when viewing targets simultaneously at the same angle. Surface characteristics that affect the brightness temperature and backscatter measurements influence the signals at different time scales. This feature is applied in an approach in which fine-scale spatial heterogeneity detected by SAR observations is applied on coarser-scale radiometer measurements to produce an intermediate-resolution disaggregated brightness temperature field. These brightness temperatures are then used with established radiometer-based algorithms to retrieve soil moisture at the intermediate resolution.The capability of the overall algorithm is demonstrated using data acquired by the airborne passive and active L-band system from field campaigns and also by simulated global dataset. Results indicate that the algorithm has the potential to retrieve soil moisture at 9-km resolution, with the accuracy required for SMAP, over regions having vegetation up to 5-kg/m 2 vegetation water content. The results show a reduction in root mean square error of > 0.02 cm 3 /cm 3 volumetric soil moisture (40% improvement in the statistics) from the minimum performance defined as the soil moisture retrieved using radiometer measurements re-sampled to the intermediate scale.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.