Gold nanoparticles functionalized with a thiol ligand containing both mannose mimicking shikimoyl- and transfection enhancing guanidinyl-functionalities forin vivodelivery of DNA vaccines to dendritic cells.
Numerous prior studies have been reported on the use of pH-sensitive drug carriers such as micelles, liposomes, peptides, polymers, nanoparticles, etc. that are sensitive to the acidic (pH = ∼6.5) microenvironments of tumor tissues. Such systems have been primarily used in the past as effective drug/gene/microRNA carriers for releasing their anti-cancer payloads selectively to tumor cells/tissues. Herein, we report on the development of new liposomal drug carriers prepared from glutamic acid backbone-based cationic amphiphiles containing both endosomal pH-sensitive histidine as well as cellular uptake & solubility enhancing guanidine moieties in their polar head-group regions. The most efficient one among the four presently described endosomal pH-sensitive liposomal drug carriers not only effectively delivers potent anti-cancer drugs (curcumin & paclitaxel) to mouse tumor, but also significantly contributes to inhibiting mouse tumor growth. The findings in the in vitro mechanistic studies are consistent with apoptosis of tumor cells being mediated through increased cell cycle arrest in the G2/M phase. Findings in the FRET assay and in vitro drug release studies conducted with the liposomes of the most efficient pH-sensitive lipid demonstrated its pH dependent fusogenic and controlled curcumin release properties. Importantly, the presently described liposomal formulation of curcumin & paclitaxel enhanced overall survivability of tumor bearing mice. To the best of our knowledge, the presently described system (curcumin, paclitaxel and liposomal carrier itself) is the first of its kind pH-sensitive liposomal formulation of potent chemotherapeutics in which the liposomal drug itself exhibits significant mouse tumor growth inhibition properties.
Glioblastoma multiforme (GBM) is one of the most aggressive tumors with a median survival of only 15 months. Effective therapeutics need to overcome the formidable challenge of crossing the blood–brain barrier (BBB). Receptors and transporters overexpressed on BCECs are being used for designing liposomes, polymers, polymeric micelles, peptides, and dendrimer-based drug carriers for combating brain tumors. Herein, using the orthotopic mouse glioblastoma model, we show that codelivering a small-molecule inhibitor of the JAK/STAT pathway (WP1066) and STAT3siRNA with nanometric (100–150 nm) α5β1 integrin receptor-selective liposomes of RGDK-lipopeptide holds therapeutic promise in combating glioblastoma. Rh-PE (red)-labeled liposomes of RGDK-lipopeptide were found to be internalized in GL261 cells via integrin α5β1 receptors. Intravenously administered near-infrared (NIR)-dye-labeled α5β1 integrin receptor-selective liposomes of RGDK-lipopeptide were found to be accumulated preferentially in the mouse brain tumor tissue. Importantly, we show that iv injection of WP1066 (a commercially sold small-molecule inhibitor of the JAK/STAT pathway) and STAT3siRNA cosolubilized within the liposomes of RGDK-lipopeptide leads to significant inhibition (>350% compared to the untreated mice group) of orthotopically growing mouse glioblastoma. The present strategy may find future use in combating GBM.
Numerous prior studies on fighting cancer have been based on using inhibitors of JAK-STAT pathway (signal transducer and activator of transcription 3 (STAT3) inhibitor in particular), a signaling pathway responsible for progression of many types of cancer cells. However, recent studies have shown that STAT3 activation leads to upregulation of program death receptor-ligand 1 (PD-L1, an immune checkpoint protein that plays a major role behind evasion of immune systems by growing tumors) expression levels in tumor cells, leading to enhanced immune suppression. This is why global efforts are being witnessed in combating cancer through use of immune checkpoint inhibitors. Herein, we report on the design, synthesis, physicochemical characterizations, and bioactivity evaluation of novel tumor- and tumor-vasculature-targeting noncytotoxic Au-CGKRK nanoconjugates (17–80 nm) for combating tumor. Using a syngeneic mouse tumor model, we show that intraperitoneal (i.p.) administration of the Au-CGKRK nanoparticles (NPs) complexed with both PD-L1siRNA (the immune checkpoint inhibitor) and STAT3siRNA (the JAK-STAT pathway inhibitor) results in significant (>70%) enhancement in overall survivability (OS) in melanoma-bearing mice ( n = 5) when compared to the OS in the untreated mice group. The expression levels of CD8 and CD4 proteins in the tumor lysates of differently treated mice groups (by Western blotting) are consistent with the observed OS enhancement being a T-cell-driven process. Biodistribution study using near-infrared dye-loaded Au-CGKRK nanoconjugates revealed selective accumulation of the dye in mouse tumor. Notably, the overall survival benefits were significantly less (∼35%) when melanoma-bearing mice were treated (i.p.) with Au-CGKRK NPs complexed with only PD-L1siRNA or with STAT3siRNA alone. The presently described Au-CGKRK nanoconjugates are expected to find future use in therapeutic RNA-interference-based cancer immunotherapy.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.