ABSTRACT.A novel intelligent automated model to recognize and classify a cashew kernels using Artificial Neural Network (ANN). The model primarily intends to work on two phases. The phase one, built with a proposed method to extract features, which includes 16 morphological features and also 24 color features from the input cashew kernel images. In phase two, a Multilayer Perceptron ANN is being used to recognize and classify the given white wholes grades using back propagation learning algorithm. The proposed method achieves a classification accuracy of 88.93%. This study also reveals that the combination of morphological and color features outperforms rather using any one set of features separately to grade cashew kernels.Keywords: White Wholes (WW) grade cashew kernel images, feature extraction, artificial neural networks, classification.Detectar e classificar castanhas de caju, tipo inteiro branco, através de rede neural artificial RESUMO. Analisa-se um novo modelo automatizado para detectar e classificar castanhas de caju por uma rede neural artificial. O modelo funciona em duas frases. Fase 1 é construída para detectar as características, as quais incluem 16 fatores morfológicos e 24 características de cor a partir de imagens da castanha do caju. Na Fase 2 emprega-se a rede neural artificial multicamada para detectar e classificar os graus inteiros brancos por algoritmo de propagação reversa. O método classifica com uma exatidão de 88,93%. Essa investigação também revela que a combinação das características morfológicas e de cor vai além de que quando se usa uma série de características separadas para classificar as castanhas de caju.Palavras-chave: imagens de castanhas de caju serie brancos inteiros, características de extração, rede neural artificial, classificação.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.